{"title":"针对任何结果和异质性的普通最小二乘法和工具变量估算器","authors":"Myoung-jae Lee, Chirok Han","doi":"10.1177/1536867x241233645","DOIUrl":null,"url":null,"abstract":"Given an exogenous treatment d and covariates x, an ordinary least-squares (OLS) estimator is often applied with a noncontinuous outcome y to find the effect of d, despite the fact that the OLS linear model is invalid. Also, when d is endogenous with an instrument z, an instrumental-variables estimator (IVE) is often applied, again despite the invalid linear model. Furthermore, the treatment effect is likely to be heterogeneous, say, µ<jats:sub>1</jats:sub>(x), not a constant as assumed in most linear models. Given these problems, the question is then what kind of effect the OLS and IVE actually estimate. Under some restrictive conditions such as a “saturated model”, the estimated effect is known to be a weighted average, say, E{ ω(x) µ<jats:sub>1</jats:sub>(x)}, but in general, OLS and the IVE applied to linear models with a noncontinuous outcome or heterogeneous effect fail to yield a weighted average of heterogeneous treatment effects. Recently, however, it has been found that E{ ω(x) µ<jats:sub>1</jats:sub>(x)} can be estimated by OLS and the IVE without those restrictive conditions if the “propensity-score residual” d − E( d| x) or the “instrument-score residual” z−E( z| x) is used. In this article, we review this recent development and provide a command for OLS and the IVE with the propensity- and instrument-score residuals, which are applicable to any outcome and any heterogeneous effect.","PeriodicalId":501101,"journal":{"name":"The Stata Journal: Promoting communications on statistics and Stata","volume":"143 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ordinary least squares and instrumental-variables estimators for any outcome and heterogeneity\",\"authors\":\"Myoung-jae Lee, Chirok Han\",\"doi\":\"10.1177/1536867x241233645\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given an exogenous treatment d and covariates x, an ordinary least-squares (OLS) estimator is often applied with a noncontinuous outcome y to find the effect of d, despite the fact that the OLS linear model is invalid. Also, when d is endogenous with an instrument z, an instrumental-variables estimator (IVE) is often applied, again despite the invalid linear model. Furthermore, the treatment effect is likely to be heterogeneous, say, µ<jats:sub>1</jats:sub>(x), not a constant as assumed in most linear models. Given these problems, the question is then what kind of effect the OLS and IVE actually estimate. Under some restrictive conditions such as a “saturated model”, the estimated effect is known to be a weighted average, say, E{ ω(x) µ<jats:sub>1</jats:sub>(x)}, but in general, OLS and the IVE applied to linear models with a noncontinuous outcome or heterogeneous effect fail to yield a weighted average of heterogeneous treatment effects. Recently, however, it has been found that E{ ω(x) µ<jats:sub>1</jats:sub>(x)} can be estimated by OLS and the IVE without those restrictive conditions if the “propensity-score residual” d − E( d| x) or the “instrument-score residual” z−E( z| x) is used. In this article, we review this recent development and provide a command for OLS and the IVE with the propensity- and instrument-score residuals, which are applicable to any outcome and any heterogeneous effect.\",\"PeriodicalId\":501101,\"journal\":{\"name\":\"The Stata Journal: Promoting communications on statistics and Stata\",\"volume\":\"143 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Stata Journal: Promoting communications on statistics and Stata\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/1536867x241233645\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Stata Journal: Promoting communications on statistics and Stata","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/1536867x241233645","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Ordinary least squares and instrumental-variables estimators for any outcome and heterogeneity
Given an exogenous treatment d and covariates x, an ordinary least-squares (OLS) estimator is often applied with a noncontinuous outcome y to find the effect of d, despite the fact that the OLS linear model is invalid. Also, when d is endogenous with an instrument z, an instrumental-variables estimator (IVE) is often applied, again despite the invalid linear model. Furthermore, the treatment effect is likely to be heterogeneous, say, µ1(x), not a constant as assumed in most linear models. Given these problems, the question is then what kind of effect the OLS and IVE actually estimate. Under some restrictive conditions such as a “saturated model”, the estimated effect is known to be a weighted average, say, E{ ω(x) µ1(x)}, but in general, OLS and the IVE applied to linear models with a noncontinuous outcome or heterogeneous effect fail to yield a weighted average of heterogeneous treatment effects. Recently, however, it has been found that E{ ω(x) µ1(x)} can be estimated by OLS and the IVE without those restrictive conditions if the “propensity-score residual” d − E( d| x) or the “instrument-score residual” z−E( z| x) is used. In this article, we review this recent development and provide a command for OLS and the IVE with the propensity- and instrument-score residuals, which are applicable to any outcome and any heterogeneous effect.