利用基于变换器的算法在 DECaLS 中消除重叠星系:一种结合多种波段和数据类型的方法

IF 5.4 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Ran Zhang, Meng Liu, Zhenping Yi, Hao Yuan, Zechao Yang, Yude Bu, Xiaoming Kong, Chenglin Jia, Yuchen Bi, Yusheng Zhang
{"title":"利用基于变换器的算法在 DECaLS 中消除重叠星系:一种结合多种波段和数据类型的方法","authors":"Ran Zhang, Meng Liu, Zhenping Yi, Hao Yuan, Zechao Yang, Yude Bu, Xiaoming Kong, Chenglin Jia, Yuchen Bi, Yusheng Zhang","doi":"10.1017/pasa.2024.16","DOIUrl":null,"url":null,"abstract":"In large-scale galaxy surveys, particularly deep ground-based photometric studies, galaxy blending was inevitable. Such blending posed a potential primary systematic uncertainty for upcoming surveys. Current deblenders predominantly depended on analytical modeling of galaxy profiles, facing limitations due to inflexible and imprecise models. We presented a novel approach, using a U-net structured Transformer-based network for deblending astronomical images, which we term the <jats:italic>CAT-deblender</jats:italic>. It was trained using both RGB and the <jats:italic>grz</jats:italic>-band images, spanning two distinct data formats present in the Dark Energy Camera Legacy Survey (<jats:italic>DECaLS</jats:italic>) database, including galaxies with diverse morphologies in the training dataset. Our method necessitated only the approximate central coordinates of each target galaxy, sourced from galaxy detection, bypassing assumptions on neighboring source counts. Post-deblending, our RGB images retained a high signal-to-noise peak, consistently showing superior structural similarity against ground truth. For multi-band images, the ellipticity of central galaxies and median reconstruction error for <jats:italic>r</jats:italic>-band consistently lie within ±0.025 to ±0.25, revealing minimal pixel residuals. In our comparison of deblending capabilities focused on flux recovery, our model showed a mere 1% error in magnitude recovery for quadruply blended galaxies, significantly outperforming SExtractor’s higher error rate of 4.8%. Furthermore, by cross-matching with the publicly accessible overlapping galaxy catalogs from the <jats:italic>DECaLS</jats:italic> database, we successfully deblended 433 overlapping galaxies. Moreover, we’ve demonstrated effective deblending of 63,733 blended galaxy images, randomly chosen from the <jats:italic>DECaLS</jats:italic> database.","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deblending overlapping galaxies in DECaLS using Transformer-Based algorithm: a method combining multiple bands and data types\",\"authors\":\"Ran Zhang, Meng Liu, Zhenping Yi, Hao Yuan, Zechao Yang, Yude Bu, Xiaoming Kong, Chenglin Jia, Yuchen Bi, Yusheng Zhang\",\"doi\":\"10.1017/pasa.2024.16\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In large-scale galaxy surveys, particularly deep ground-based photometric studies, galaxy blending was inevitable. Such blending posed a potential primary systematic uncertainty for upcoming surveys. Current deblenders predominantly depended on analytical modeling of galaxy profiles, facing limitations due to inflexible and imprecise models. We presented a novel approach, using a U-net structured Transformer-based network for deblending astronomical images, which we term the <jats:italic>CAT-deblender</jats:italic>. It was trained using both RGB and the <jats:italic>grz</jats:italic>-band images, spanning two distinct data formats present in the Dark Energy Camera Legacy Survey (<jats:italic>DECaLS</jats:italic>) database, including galaxies with diverse morphologies in the training dataset. Our method necessitated only the approximate central coordinates of each target galaxy, sourced from galaxy detection, bypassing assumptions on neighboring source counts. Post-deblending, our RGB images retained a high signal-to-noise peak, consistently showing superior structural similarity against ground truth. For multi-band images, the ellipticity of central galaxies and median reconstruction error for <jats:italic>r</jats:italic>-band consistently lie within ±0.025 to ±0.25, revealing minimal pixel residuals. In our comparison of deblending capabilities focused on flux recovery, our model showed a mere 1% error in magnitude recovery for quadruply blended galaxies, significantly outperforming SExtractor’s higher error rate of 4.8%. Furthermore, by cross-matching with the publicly accessible overlapping galaxy catalogs from the <jats:italic>DECaLS</jats:italic> database, we successfully deblended 433 overlapping galaxies. Moreover, we’ve demonstrated effective deblending of 63,733 blended galaxy images, randomly chosen from the <jats:italic>DECaLS</jats:italic> database.\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1017/pasa.2024.16\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1017/pasa.2024.16","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

在大规模星系巡天中,特别是在深层地面测光研究中,星系混合是不可避免的。这种混合给即将进行的巡天观测带来了潜在的主要系统不确定性。目前的除混器主要依赖于星系剖面的分析建模,但由于模型不灵活、不精确而受到限制。我们提出了一种新颖的方法,使用基于 U-net 结构的 Transformer 网络对天文图像进行排杂,我们称之为 CAT-排杂器。该方法使用 RGB 和 grz 波段图像进行训练,涵盖暗能量相机遗留巡天(DECaLS)数据库中两种不同的数据格式,包括训练数据集中形态各异的星系。我们的方法只需要从星系探测中获取每个目标星系的近似中心坐标,绕过了对邻近源计数的假设。经过去噪处理后,我们的 RGB 图像保持了较高的信噪比峰值,与地面实况相比,结构相似度一直很高。对于多波段图像,中心星系的椭圆度和 r 波段的中位重建误差始终在 ±0.025 到 ±0.25 之间,像素残差极小。在以通量恢复为重点的除谱能力比较中,我们的模型显示四倍混合星系的星等恢复误差仅为 1%,明显优于 SExtractor 4.8%的高误差率。此外,通过与 DECaLS 数据库中可公开获取的重叠星系星表进行交叉匹配,我们成功地去叠加了 433 个重叠星系。此外,我们还展示了从 DECaLS 数据库中随机抽取的 63733 个混合星系图像的有效去叠。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deblending overlapping galaxies in DECaLS using Transformer-Based algorithm: a method combining multiple bands and data types
In large-scale galaxy surveys, particularly deep ground-based photometric studies, galaxy blending was inevitable. Such blending posed a potential primary systematic uncertainty for upcoming surveys. Current deblenders predominantly depended on analytical modeling of galaxy profiles, facing limitations due to inflexible and imprecise models. We presented a novel approach, using a U-net structured Transformer-based network for deblending astronomical images, which we term the CAT-deblender. It was trained using both RGB and the grz-band images, spanning two distinct data formats present in the Dark Energy Camera Legacy Survey (DECaLS) database, including galaxies with diverse morphologies in the training dataset. Our method necessitated only the approximate central coordinates of each target galaxy, sourced from galaxy detection, bypassing assumptions on neighboring source counts. Post-deblending, our RGB images retained a high signal-to-noise peak, consistently showing superior structural similarity against ground truth. For multi-band images, the ellipticity of central galaxies and median reconstruction error for r-band consistently lie within ±0.025 to ±0.25, revealing minimal pixel residuals. In our comparison of deblending capabilities focused on flux recovery, our model showed a mere 1% error in magnitude recovery for quadruply blended galaxies, significantly outperforming SExtractor’s higher error rate of 4.8%. Furthermore, by cross-matching with the publicly accessible overlapping galaxy catalogs from the DECaLS database, we successfully deblended 433 overlapping galaxies. Moreover, we’ve demonstrated effective deblending of 63,733 blended galaxy images, randomly chosen from the DECaLS database.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信