关于在具有特殊消失理想的集合上定义的广义单项式编码

Cícero Carvalho
{"title":"关于在具有特殊消失理想的集合上定义的广义单项式编码","authors":"Cícero Carvalho","doi":"10.1007/s00574-024-00389-5","DOIUrl":null,"url":null,"abstract":"<p>In this work we study evaluation codes defined on the points of a subset <span>\\(\\mathcal {X}\\)</span> of an affine space over a finite field, whose vanishing ideal admits a Gröbner basis of a certain type, which occurs for subsets considered in several well-known examples of evaluation codes, like Reed-Solomon codes, Reed-Muller codes and affine cartesian codes. We determine properties of the polynomials in this basis which allow the determination of the footprint of the vanishing ideal and the explicit construction of indicator functions for the points of <span>\\(\\mathcal {X}\\)</span>. We then consider generalized monomial evaluation codes and find information on their duals, and the dimension of their hulls. We present several examples of applications of the results we found.</p>","PeriodicalId":501417,"journal":{"name":"Bulletin of the Brazilian Mathematical Society, New Series","volume":"152 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Generalized Monomial Codes Defined Over Sets with a Special Vanishing Ideal\",\"authors\":\"Cícero Carvalho\",\"doi\":\"10.1007/s00574-024-00389-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this work we study evaluation codes defined on the points of a subset <span>\\\\(\\\\mathcal {X}\\\\)</span> of an affine space over a finite field, whose vanishing ideal admits a Gröbner basis of a certain type, which occurs for subsets considered in several well-known examples of evaluation codes, like Reed-Solomon codes, Reed-Muller codes and affine cartesian codes. We determine properties of the polynomials in this basis which allow the determination of the footprint of the vanishing ideal and the explicit construction of indicator functions for the points of <span>\\\\(\\\\mathcal {X}\\\\)</span>. We then consider generalized monomial evaluation codes and find information on their duals, and the dimension of their hulls. We present several examples of applications of the results we found.</p>\",\"PeriodicalId\":501417,\"journal\":{\"name\":\"Bulletin of the Brazilian Mathematical Society, New Series\",\"volume\":\"152 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Brazilian Mathematical Society, New Series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00574-024-00389-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Brazilian Mathematical Society, New Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00574-024-00389-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们研究定义在有限域上仿射空间的子集 \(\mathcal {X}\)的点上的评价码,该子集的消失理想允许一定类型的格洛布纳基础,这种基础出现在几个著名的评价码实例中考虑的子集上,如里德-所罗门码、里德-穆勒码和仿射卡特码。我们确定了这一基础中多项式的性质,从而确定了消失理想的足迹,并明确地构建了 \(\mathcal {X}\) 各点的指示函数。然后,我们考虑广义的单项式评估码,并找到它们的对偶信息以及它们的船体维度。我们将举例说明我们发现的结果的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Generalized Monomial Codes Defined Over Sets with a Special Vanishing Ideal

In this work we study evaluation codes defined on the points of a subset \(\mathcal {X}\) of an affine space over a finite field, whose vanishing ideal admits a Gröbner basis of a certain type, which occurs for subsets considered in several well-known examples of evaluation codes, like Reed-Solomon codes, Reed-Muller codes and affine cartesian codes. We determine properties of the polynomials in this basis which allow the determination of the footprint of the vanishing ideal and the explicit construction of indicator functions for the points of \(\mathcal {X}\). We then consider generalized monomial evaluation codes and find information on their duals, and the dimension of their hulls. We present several examples of applications of the results we found.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信