{"title":"半代数离线范围搜索和平面上的双斜分区","authors":"Pankaj K. Agarwal, Esther Ezra, Micha Sharir","doi":"arxiv-2403.12276","DOIUrl":null,"url":null,"abstract":"Let $P$ be a set of $m$ points in ${\\mathbb R}^2$, let $\\Sigma$ be a set of\n$n$ semi-algebraic sets of constant complexity in ${\\mathbb R}^2$, let $(S,+)$\nbe a semigroup, and let $w: P \\rightarrow S$ be a weight function on the points\nof $P$. We describe a randomized algorithm for computing $w(P\\cap\\sigma)$ for\nevery $\\sigma\\in\\Sigma$ in overall expected time $O^*\\bigl(\nm^{\\frac{2s}{5s-4}}n^{\\frac{5s-6}{5s-4}} + m^{2/3}n^{2/3} + m + n \\bigr)$,\nwhere $s>0$ is a constant that bounds the maximum complexity of the regions of\n$\\Sigma$, and where the $O^*(\\cdot)$ notation hides subpolynomial factors. For\n$s\\ge 3$, surprisingly, this bound is smaller than the best-known bound for\nanswering $m$ such queries in an on-line manner. The latter takes\n$O^*(m^{\\frac{s}{2s-1}}n^{\\frac{2s-2}{2s-1}}+m+n)$ time. Let $\\Phi: \\Sigma \\times P \\rightarrow \\{0,1\\}$ be the Boolean predicate (of\nconstant complexity) such that $\\Phi(\\sigma,p) = 1$ if $p\\in\\sigma$ and $0$\notherwise, and let $\\Sigma\\mathop{\\Phi} P = \\{ (\\sigma,p) \\in \\Sigma\\times P\n\\mid \\Phi(\\sigma,p)=1\\}$. Our algorithm actually computes a partition\n${\\mathcal B}_\\Phi$ of $\\Sigma\\mathop{\\Phi} P$ into bipartite cliques\n(bicliques) of size (i.e., sum of the sizes of the vertex sets of its\nbicliques) $O^*\\bigl( m^{\\frac{2s}{5s-4}}n^{\\frac{5s-6}{5s-4}} + m^{2/3}n^{2/3}\n+ m + n \\bigr)$. It is straightforward to compute $w(P\\cap\\sigma)$ for all\n$\\sigma\\in \\Sigma$ from ${\\mathcal B}_\\Phi$. Similarly, if $\\eta: \\Sigma\n\\rightarrow S$ is a weight function on the regions of $\\Sigma$,\n$\\sum_{\\sigma\\in \\Sigma: p \\in \\sigma} \\eta(\\sigma)$, for every point $p\\in P$,\ncan be computed from ${\\mathcal B}_\\Phi$ in a straightforward manner. A recent\nwork of Chan et al. solves the online version of this dual point enclosure\nproblem within the same performance bound as our off-line solution. We also\nmention a few other applications of computing ${\\mathcal B}_\\Phi$.","PeriodicalId":501570,"journal":{"name":"arXiv - CS - Computational Geometry","volume":"24 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Semi-Algebraic Off-line Range Searching and Biclique Partitions in the Plane\",\"authors\":\"Pankaj K. Agarwal, Esther Ezra, Micha Sharir\",\"doi\":\"arxiv-2403.12276\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $P$ be a set of $m$ points in ${\\\\mathbb R}^2$, let $\\\\Sigma$ be a set of\\n$n$ semi-algebraic sets of constant complexity in ${\\\\mathbb R}^2$, let $(S,+)$\\nbe a semigroup, and let $w: P \\\\rightarrow S$ be a weight function on the points\\nof $P$. We describe a randomized algorithm for computing $w(P\\\\cap\\\\sigma)$ for\\nevery $\\\\sigma\\\\in\\\\Sigma$ in overall expected time $O^*\\\\bigl(\\nm^{\\\\frac{2s}{5s-4}}n^{\\\\frac{5s-6}{5s-4}} + m^{2/3}n^{2/3} + m + n \\\\bigr)$,\\nwhere $s>0$ is a constant that bounds the maximum complexity of the regions of\\n$\\\\Sigma$, and where the $O^*(\\\\cdot)$ notation hides subpolynomial factors. For\\n$s\\\\ge 3$, surprisingly, this bound is smaller than the best-known bound for\\nanswering $m$ such queries in an on-line manner. The latter takes\\n$O^*(m^{\\\\frac{s}{2s-1}}n^{\\\\frac{2s-2}{2s-1}}+m+n)$ time. Let $\\\\Phi: \\\\Sigma \\\\times P \\\\rightarrow \\\\{0,1\\\\}$ be the Boolean predicate (of\\nconstant complexity) such that $\\\\Phi(\\\\sigma,p) = 1$ if $p\\\\in\\\\sigma$ and $0$\\notherwise, and let $\\\\Sigma\\\\mathop{\\\\Phi} P = \\\\{ (\\\\sigma,p) \\\\in \\\\Sigma\\\\times P\\n\\\\mid \\\\Phi(\\\\sigma,p)=1\\\\}$. Our algorithm actually computes a partition\\n${\\\\mathcal B}_\\\\Phi$ of $\\\\Sigma\\\\mathop{\\\\Phi} P$ into bipartite cliques\\n(bicliques) of size (i.e., sum of the sizes of the vertex sets of its\\nbicliques) $O^*\\\\bigl( m^{\\\\frac{2s}{5s-4}}n^{\\\\frac{5s-6}{5s-4}} + m^{2/3}n^{2/3}\\n+ m + n \\\\bigr)$. It is straightforward to compute $w(P\\\\cap\\\\sigma)$ for all\\n$\\\\sigma\\\\in \\\\Sigma$ from ${\\\\mathcal B}_\\\\Phi$. Similarly, if $\\\\eta: \\\\Sigma\\n\\\\rightarrow S$ is a weight function on the regions of $\\\\Sigma$,\\n$\\\\sum_{\\\\sigma\\\\in \\\\Sigma: p \\\\in \\\\sigma} \\\\eta(\\\\sigma)$, for every point $p\\\\in P$,\\ncan be computed from ${\\\\mathcal B}_\\\\Phi$ in a straightforward manner. A recent\\nwork of Chan et al. solves the online version of this dual point enclosure\\nproblem within the same performance bound as our off-line solution. We also\\nmention a few other applications of computing ${\\\\mathcal B}_\\\\Phi$.\",\"PeriodicalId\":501570,\"journal\":{\"name\":\"arXiv - CS - Computational Geometry\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Computational Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2403.12276\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computational Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2403.12276","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Semi-Algebraic Off-line Range Searching and Biclique Partitions in the Plane
Let $P$ be a set of $m$ points in ${\mathbb R}^2$, let $\Sigma$ be a set of
$n$ semi-algebraic sets of constant complexity in ${\mathbb R}^2$, let $(S,+)$
be a semigroup, and let $w: P \rightarrow S$ be a weight function on the points
of $P$. We describe a randomized algorithm for computing $w(P\cap\sigma)$ for
every $\sigma\in\Sigma$ in overall expected time $O^*\bigl(
m^{\frac{2s}{5s-4}}n^{\frac{5s-6}{5s-4}} + m^{2/3}n^{2/3} + m + n \bigr)$,
where $s>0$ is a constant that bounds the maximum complexity of the regions of
$\Sigma$, and where the $O^*(\cdot)$ notation hides subpolynomial factors. For
$s\ge 3$, surprisingly, this bound is smaller than the best-known bound for
answering $m$ such queries in an on-line manner. The latter takes
$O^*(m^{\frac{s}{2s-1}}n^{\frac{2s-2}{2s-1}}+m+n)$ time. Let $\Phi: \Sigma \times P \rightarrow \{0,1\}$ be the Boolean predicate (of
constant complexity) such that $\Phi(\sigma,p) = 1$ if $p\in\sigma$ and $0$
otherwise, and let $\Sigma\mathop{\Phi} P = \{ (\sigma,p) \in \Sigma\times P
\mid \Phi(\sigma,p)=1\}$. Our algorithm actually computes a partition
${\mathcal B}_\Phi$ of $\Sigma\mathop{\Phi} P$ into bipartite cliques
(bicliques) of size (i.e., sum of the sizes of the vertex sets of its
bicliques) $O^*\bigl( m^{\frac{2s}{5s-4}}n^{\frac{5s-6}{5s-4}} + m^{2/3}n^{2/3}
+ m + n \bigr)$. It is straightforward to compute $w(P\cap\sigma)$ for all
$\sigma\in \Sigma$ from ${\mathcal B}_\Phi$. Similarly, if $\eta: \Sigma
\rightarrow S$ is a weight function on the regions of $\Sigma$,
$\sum_{\sigma\in \Sigma: p \in \sigma} \eta(\sigma)$, for every point $p\in P$,
can be computed from ${\mathcal B}_\Phi$ in a straightforward manner. A recent
work of Chan et al. solves the online version of this dual point enclosure
problem within the same performance bound as our off-line solution. We also
mention a few other applications of computing ${\mathcal B}_\Phi$.