{"title":"旗流形上的实用梯度和共轭梯度方法","authors":"Xiaojing Zhu, Chungen Shen","doi":"10.1007/s10589-024-00568-6","DOIUrl":null,"url":null,"abstract":"<p>Flag manifolds, sets of nested sequences of linear subspaces with fixed dimensions, are rising in numerical analysis and statistics. The current optimization algorithms on flag manifolds are based on the exponential map and parallel transport, which are expensive to compute. In this paper we propose practical optimization methods on flag manifolds without the exponential map and parallel transport. Observing that flag manifolds have a similar homogeneous structure with Grassmann and Stiefel manifolds, we generalize some typical retractions and vector transports to flag manifolds, including the Cayley-type retraction and vector transport, the QR-based and polar-based retractions, the projection-type vector transport and the projection of the differentiated polar-based retraction as a vector transport. Theoretical properties and efficient implementations of the proposed retractions and vector transports are discussed. Then we establish Riemannian gradient and Riemannian conjugate gradient algorithms based on these retractions and vector transports. Numerical results on the problem of nonlinear eigenflags demonstrate that our algorithms have a great advantage in efficiency over the existing ones.</p>","PeriodicalId":55227,"journal":{"name":"Computational Optimization and Applications","volume":"42 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Practical gradient and conjugate gradient methods on flag manifolds\",\"authors\":\"Xiaojing Zhu, Chungen Shen\",\"doi\":\"10.1007/s10589-024-00568-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Flag manifolds, sets of nested sequences of linear subspaces with fixed dimensions, are rising in numerical analysis and statistics. The current optimization algorithms on flag manifolds are based on the exponential map and parallel transport, which are expensive to compute. In this paper we propose practical optimization methods on flag manifolds without the exponential map and parallel transport. Observing that flag manifolds have a similar homogeneous structure with Grassmann and Stiefel manifolds, we generalize some typical retractions and vector transports to flag manifolds, including the Cayley-type retraction and vector transport, the QR-based and polar-based retractions, the projection-type vector transport and the projection of the differentiated polar-based retraction as a vector transport. Theoretical properties and efficient implementations of the proposed retractions and vector transports are discussed. Then we establish Riemannian gradient and Riemannian conjugate gradient algorithms based on these retractions and vector transports. Numerical results on the problem of nonlinear eigenflags demonstrate that our algorithms have a great advantage in efficiency over the existing ones.</p>\",\"PeriodicalId\":55227,\"journal\":{\"name\":\"Computational Optimization and Applications\",\"volume\":\"42 1\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Optimization and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10589-024-00568-6\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Optimization and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10589-024-00568-6","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
摘要
旗流形是具有固定维数的线性子空间嵌套序列集,在数值分析和统计学中日益兴起。目前的旗流形优化算法基于指数图和平行传输,计算成本高昂。本文提出了无需指数图和平行传输的旗流形实用优化方法。观察到旗流形与格拉斯曼流形和 Stiefel 流形具有相似的同质结构,我们将一些典型的缩回和矢量传输推广到旗流形,包括 Cayley 型缩回和矢量传输、基于 QR 的缩回和基于极坐标的缩回、投影型矢量传输以及将基于极坐标的微分缩回投影为矢量传输。我们讨论了所提出的缩回和向量传输的理论特性和高效实现。然后,我们基于这些回缩和向量传输建立了黎曼梯度算法和黎曼共轭梯度算法。非线性特征标志问题的数值结果表明,与现有算法相比,我们的算法在效率上有很大优势。
Practical gradient and conjugate gradient methods on flag manifolds
Flag manifolds, sets of nested sequences of linear subspaces with fixed dimensions, are rising in numerical analysis and statistics. The current optimization algorithms on flag manifolds are based on the exponential map and parallel transport, which are expensive to compute. In this paper we propose practical optimization methods on flag manifolds without the exponential map and parallel transport. Observing that flag manifolds have a similar homogeneous structure with Grassmann and Stiefel manifolds, we generalize some typical retractions and vector transports to flag manifolds, including the Cayley-type retraction and vector transport, the QR-based and polar-based retractions, the projection-type vector transport and the projection of the differentiated polar-based retraction as a vector transport. Theoretical properties and efficient implementations of the proposed retractions and vector transports are discussed. Then we establish Riemannian gradient and Riemannian conjugate gradient algorithms based on these retractions and vector transports. Numerical results on the problem of nonlinear eigenflags demonstrate that our algorithms have a great advantage in efficiency over the existing ones.
期刊介绍:
Computational Optimization and Applications is a peer reviewed journal that is committed to timely publication of research and tutorial papers on the analysis and development of computational algorithms and modeling technology for optimization. Algorithms either for general classes of optimization problems or for more specific applied problems are of interest. Stochastic algorithms as well as deterministic algorithms will be considered. Papers that can provide both theoretical analysis, along with carefully designed computational experiments, are particularly welcome.
Topics of interest include, but are not limited to the following:
Large Scale Optimization,
Unconstrained Optimization,
Linear Programming,
Quadratic Programming Complementarity Problems, and Variational Inequalities,
Constrained Optimization,
Nondifferentiable Optimization,
Integer Programming,
Combinatorial Optimization,
Stochastic Optimization,
Multiobjective Optimization,
Network Optimization,
Complexity Theory,
Approximations and Error Analysis,
Parametric Programming and Sensitivity Analysis,
Parallel Computing, Distributed Computing, and Vector Processing,
Software, Benchmarks, Numerical Experimentation and Comparisons,
Modelling Languages and Systems for Optimization,
Automatic Differentiation,
Applications in Engineering, Finance, Optimal Control, Optimal Design, Operations Research,
Transportation, Economics, Communications, Manufacturing, and Management Science.