TILOS 人工智能研究所:将优化和人工智能整合到芯片设计、网络和机器人技术中

IF 2.5 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Ai Magazine Pub Date : 2024-02-20 DOI:10.1002/aaai.12165
Andrew B. Kahng, Arya Mazumdar, Jodi Reeves, Yusu Wang
{"title":"TILOS 人工智能研究所:将优化和人工智能整合到芯片设计、网络和机器人技术中","authors":"Andrew B. Kahng,&nbsp;Arya Mazumdar,&nbsp;Jodi Reeves,&nbsp;Yusu Wang","doi":"10.1002/aaai.12165","DOIUrl":null,"url":null,"abstract":"<p>Optimization is a universal quest, reflecting the basic human need to <i>do better</i>. Improved optimizations of energy-efficiency, safety, robustness, and other criteria in engineered systems would bring incalculable societal benefits. But, fundamental challenges of scale and complexity keep many such real-world optimization needs beyond reach. This article describes The Institute for Learning-enabled Optimization at Scale (TILOS), an NSF AI Research Institute for Advances in Optimization that aims to overcome these challenges in three high-stakes use domains: chip design, communication networks, and contextual robotics. TILOS integrates foundational research, translation, education, and broader impacts toward a new nexus of optimization, AI, and data-driven learning. We summarize central challenges, early progress, and futures for the institute.</p>","PeriodicalId":7854,"journal":{"name":"Ai Magazine","volume":"45 1","pages":"54-60"},"PeriodicalIF":2.5000,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aaai.12165","citationCount":"0","resultStr":"{\"title\":\"The TILOS AI Institute: Integrating optimization and AI for chip design, networks, and robotics\",\"authors\":\"Andrew B. Kahng,&nbsp;Arya Mazumdar,&nbsp;Jodi Reeves,&nbsp;Yusu Wang\",\"doi\":\"10.1002/aaai.12165\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Optimization is a universal quest, reflecting the basic human need to <i>do better</i>. Improved optimizations of energy-efficiency, safety, robustness, and other criteria in engineered systems would bring incalculable societal benefits. But, fundamental challenges of scale and complexity keep many such real-world optimization needs beyond reach. This article describes The Institute for Learning-enabled Optimization at Scale (TILOS), an NSF AI Research Institute for Advances in Optimization that aims to overcome these challenges in three high-stakes use domains: chip design, communication networks, and contextual robotics. TILOS integrates foundational research, translation, education, and broader impacts toward a new nexus of optimization, AI, and data-driven learning. We summarize central challenges, early progress, and futures for the institute.</p>\",\"PeriodicalId\":7854,\"journal\":{\"name\":\"Ai Magazine\",\"volume\":\"45 1\",\"pages\":\"54-60\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aaai.12165\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ai Magazine\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/aaai.12165\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ai Magazine","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aaai.12165","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

优化是一种普遍的追求,反映了人类追求更好的基本需求。提高工程系统的能效、安全性、稳健性和其他标准的优化程度,将带来不可估量的社会效益。但是,规模和复杂性带来的基本挑战使得现实世界中的许多优化需求遥不可及。本文介绍了规模化学习优化研究所(TILOS),这是美国国家科学基金会(NSF)的人工智能优化进步研究所,旨在克服芯片设计、通信网络和情境机器人学这三个高风险应用领域的挑战。TILOS 整合了基础研究、转化、教育和更广泛的影响,旨在建立优化、人工智能和数据驱动学习的新联系。我们总结了研究所面临的核心挑战、早期进展和未来展望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The TILOS AI Institute: Integrating optimization and AI for chip design, networks, and robotics

The TILOS AI Institute: Integrating optimization and AI for chip design, networks, and robotics

Optimization is a universal quest, reflecting the basic human need to do better. Improved optimizations of energy-efficiency, safety, robustness, and other criteria in engineered systems would bring incalculable societal benefits. But, fundamental challenges of scale and complexity keep many such real-world optimization needs beyond reach. This article describes The Institute for Learning-enabled Optimization at Scale (TILOS), an NSF AI Research Institute for Advances in Optimization that aims to overcome these challenges in three high-stakes use domains: chip design, communication networks, and contextual robotics. TILOS integrates foundational research, translation, education, and broader impacts toward a new nexus of optimization, AI, and data-driven learning. We summarize central challenges, early progress, and futures for the institute.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ai Magazine
Ai Magazine 工程技术-计算机:人工智能
CiteScore
3.90
自引率
11.10%
发文量
61
审稿时长
>12 weeks
期刊介绍: AI Magazine publishes original articles that are reasonably self-contained and aimed at a broad spectrum of the AI community. Technical content should be kept to a minimum. In general, the magazine does not publish articles that have been published elsewhere in whole or in part. The magazine welcomes the contribution of articles on the theory and practice of AI as well as general survey articles, tutorial articles on timely topics, conference or symposia or workshop reports, and timely columns on topics of interest to AI scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信