基于机器学习的电化学绿色制氢充电状态预测:Zink-Zwischenschritt-Elektrolyseur (ZZE)

IF 9.6 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Daniel Vila , Elisabeth Hornberger , Christina Toigo
{"title":"基于机器学习的电化学绿色制氢充电状态预测:Zink-Zwischenschritt-Elektrolyseur (ZZE)","authors":"Daniel Vila ,&nbsp;Elisabeth Hornberger ,&nbsp;Christina Toigo","doi":"10.1016/j.egyai.2024.100355","DOIUrl":null,"url":null,"abstract":"<div><p>The intermittency of renewable energy is a key limiting factor for the successful decarbonization of both energy producing and consuming sectors. Green hydrogen has the potential to act as the central energy vector connecting hard-to-abate sectors to renewable power. However, combining energy storage and conversion for a holistic electrolyzer system remains challenging. Here, we show the innovative <em>Zink-Zwischenschritt Elektrolyseur</em> (ZZE), or Zinc Intermediate step Electrolyzer in English, that temporarily decouples the water splitting reaction and uses zinc to store electrical energy in chemical form. To perform optimal operation of a ZZE system, machine learning models were applied to predict the state of charge of a lab scale ZZE system. Using various models, we were able to determine the effectiveness of the prediction and contrast it to state of charge predictions of other energy storage systems. We show that a bi-directional long short-term memory neural network approach has the lowest error within the testing environment. This work serves to perform further ZZE development as well as state of charge prediction for other novel energy storage technologies.</p></div>","PeriodicalId":34138,"journal":{"name":"Energy and AI","volume":"16 ","pages":"Article 100355"},"PeriodicalIF":9.6000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666546824000211/pdfft?md5=1601549e1118ef8e513f352c4ed4ef35&pid=1-s2.0-S2666546824000211-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Machine learning based state-of-charge prediction of electrochemical green hydrogen production: Zink-Zwischenschritt-Elektrolyseur (ZZE)\",\"authors\":\"Daniel Vila ,&nbsp;Elisabeth Hornberger ,&nbsp;Christina Toigo\",\"doi\":\"10.1016/j.egyai.2024.100355\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The intermittency of renewable energy is a key limiting factor for the successful decarbonization of both energy producing and consuming sectors. Green hydrogen has the potential to act as the central energy vector connecting hard-to-abate sectors to renewable power. However, combining energy storage and conversion for a holistic electrolyzer system remains challenging. Here, we show the innovative <em>Zink-Zwischenschritt Elektrolyseur</em> (ZZE), or Zinc Intermediate step Electrolyzer in English, that temporarily decouples the water splitting reaction and uses zinc to store electrical energy in chemical form. To perform optimal operation of a ZZE system, machine learning models were applied to predict the state of charge of a lab scale ZZE system. Using various models, we were able to determine the effectiveness of the prediction and contrast it to state of charge predictions of other energy storage systems. We show that a bi-directional long short-term memory neural network approach has the lowest error within the testing environment. This work serves to perform further ZZE development as well as state of charge prediction for other novel energy storage technologies.</p></div>\",\"PeriodicalId\":34138,\"journal\":{\"name\":\"Energy and AI\",\"volume\":\"16 \",\"pages\":\"Article 100355\"},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2024-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666546824000211/pdfft?md5=1601549e1118ef8e513f352c4ed4ef35&pid=1-s2.0-S2666546824000211-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy and AI\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666546824000211\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy and AI","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666546824000211","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

可再生能源的间歇性是限制能源生产和消费部门成功实现去碳化的关键因素。绿色氢气有可能成为连接难以消减的部门与可再生能源的核心能源载体。然而,将能量储存和转换结合起来以形成一个整体的电解槽系统仍然具有挑战性。在这里,我们展示了创新的 Zink-Zwischenschritt Elektrolyseur (ZZE),即英文中的 Zinc Intermediate step Electrolyzer(锌中间步骤电解槽),它可以暂时分离水分裂反应,并利用锌以化学形式储存电能。为了优化 ZZE 系统的运行,我们应用机器学习模型来预测实验室规模的 ZZE 系统的电荷状态。利用各种模型,我们能够确定预测的有效性,并将其与其他储能系统的电荷状态预测进行对比。我们发现,在测试环境中,双向长短期记忆神经网络方法的误差最小。这项工作有助于进一步开发 ZZE 以及预测其他新型储能技术的充电状态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine learning based state-of-charge prediction of electrochemical green hydrogen production: Zink-Zwischenschritt-Elektrolyseur (ZZE)

The intermittency of renewable energy is a key limiting factor for the successful decarbonization of both energy producing and consuming sectors. Green hydrogen has the potential to act as the central energy vector connecting hard-to-abate sectors to renewable power. However, combining energy storage and conversion for a holistic electrolyzer system remains challenging. Here, we show the innovative Zink-Zwischenschritt Elektrolyseur (ZZE), or Zinc Intermediate step Electrolyzer in English, that temporarily decouples the water splitting reaction and uses zinc to store electrical energy in chemical form. To perform optimal operation of a ZZE system, machine learning models were applied to predict the state of charge of a lab scale ZZE system. Using various models, we were able to determine the effectiveness of the prediction and contrast it to state of charge predictions of other energy storage systems. We show that a bi-directional long short-term memory neural network approach has the lowest error within the testing environment. This work serves to perform further ZZE development as well as state of charge prediction for other novel energy storage technologies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy and AI
Energy and AI Engineering-Engineering (miscellaneous)
CiteScore
16.50
自引率
0.00%
发文量
64
审稿时长
56 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信