未来网络的量子安全与后量子安全调查

Savo Glisic (Senior Member IEEE)
{"title":"未来网络的量子安全与后量子安全调查","authors":"Savo Glisic (Senior Member IEEE)","doi":"10.1016/j.csa.2024.100039","DOIUrl":null,"url":null,"abstract":"<div><p>Classical cryptography (<em>c<sup>rypt</sup></em>) schemes (<em>s<sup>che</sup></em>) have been compromised by the practical results on quantum (<em>q</em>) computers in recent years. Nowadays these <em>s<sup>che</sup></em> ‘s can be compromised by using the Shor's methodology. This paper provides a detailed survey of the work on so called post‐ <em>q c<sup>rypt</sup></em> (PQC) <em>s<sup>che</sup></em> ‘s, which are based on different principles, minimizing the threats coming from advances of <em>q-</em> computers. Even so, post- <em>q- s<sup>che</sup></em> ‘s do not completely solve the problem (<em>p<sup>rblm</sup></em>) but rather represent (<em>r<sup>prs</sup></em>) a temporary solution. On the other hand, <em>q- c<sup>rypt</sup></em> (QC) and <em>q-</em> key distribution (<em>d<sup>istr</sup></em>) (QKD), discussed in this paper, offer the ultimate solution: by relying on entanglement (<span><math><mi>E</mi></math></span><em><sup>gle</sup></em>) between <em>q-</em> states (<span><math><mi>S</mi></math></span><em><sup>tat</sup>’s</em>). At least in the beginning, a competition is anticipated between the two approaches to security (<span><math><mi>S</mi></math></span>) <em>s<sup>che</sup></em> ‘s, so the paper provides comprehensive survey of both QC and PQC algorithms (<span><math><mi>A</mi></math></span><em><sup>lgrt</sup>’s</em>), enabling full understanding of pros and cons when choosing implementation (<span><math><mi>J</mi></math></span><em><sup>mpl</sup></em>) options in future networks (<em>n<sup>et</sup>’s</em>).</p><p>To further encourage the <em>n<sup>et</sup></em> designers to consider <em>q-</em> solutions for future <em>n<sup>et</sup></em> ‘s, the paper presents original, fundamental research work on LEO satellite <em>n<sup>et</sup></em> optimization (<span><math><mi>O</mi></math></span><em><sup>ptmz</sup></em>) <span><math><mi>A</mi></math></span><em><sup>lgrt</sup></em> ‘s for global QKD. The solutions using exclusively LEO orbits instead the combinations of LEO and GEO orbits, considered so far, enable up to two orders of magnitude power savings which is of importance when it comes to <span><math><mi>J</mi></math></span><em><sup>mpl</sup></em> of the <em>n<sup>et</sup></em> using power constrained terminals. The <span><math><mi>A</mi></math></span><em><sup>lgrt</sup></em> ‘s are designed for using <em>q-</em> Search <span><math><mi>A</mi></math></span><em><sup>lgrt</sup></em> ‘s (QSA), like Grover <span><math><mi>A</mi></math></span><em><sup>lgrt</sup></em>, and <em>q-</em> Approximate (<em>a<sup>prx</sup></em>) <span><math><mi>O</mi></math></span><em><sup>ptmz</sup></em> -<span><math><mi>A</mi></math></span><em><sup>lgrt</sup></em> ‘s (QAOA), especially powerful for solving combinatorial <span><math><mi>O</mi></math></span><em><sup>ptmz</sup></em> -<em>p<sup>rblm</sup></em> ‘s. <em>Index Terms: PQC, QC, QKD.</em></p></div>","PeriodicalId":100351,"journal":{"name":"Cyber Security and Applications","volume":"2 ","pages":"Article 100039"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772918424000055/pdfft?md5=6213b526fd4d6089b8bf1b65aa6fb038&pid=1-s2.0-S2772918424000055-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Quantum vs post‐quantum security for future networks: Survey\",\"authors\":\"Savo Glisic (Senior Member IEEE)\",\"doi\":\"10.1016/j.csa.2024.100039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Classical cryptography (<em>c<sup>rypt</sup></em>) schemes (<em>s<sup>che</sup></em>) have been compromised by the practical results on quantum (<em>q</em>) computers in recent years. Nowadays these <em>s<sup>che</sup></em> ‘s can be compromised by using the Shor's methodology. This paper provides a detailed survey of the work on so called post‐ <em>q c<sup>rypt</sup></em> (PQC) <em>s<sup>che</sup></em> ‘s, which are based on different principles, minimizing the threats coming from advances of <em>q-</em> computers. Even so, post- <em>q- s<sup>che</sup></em> ‘s do not completely solve the problem (<em>p<sup>rblm</sup></em>) but rather represent (<em>r<sup>prs</sup></em>) a temporary solution. On the other hand, <em>q- c<sup>rypt</sup></em> (QC) and <em>q-</em> key distribution (<em>d<sup>istr</sup></em>) (QKD), discussed in this paper, offer the ultimate solution: by relying on entanglement (<span><math><mi>E</mi></math></span><em><sup>gle</sup></em>) between <em>q-</em> states (<span><math><mi>S</mi></math></span><em><sup>tat</sup>’s</em>). At least in the beginning, a competition is anticipated between the two approaches to security (<span><math><mi>S</mi></math></span>) <em>s<sup>che</sup></em> ‘s, so the paper provides comprehensive survey of both QC and PQC algorithms (<span><math><mi>A</mi></math></span><em><sup>lgrt</sup>’s</em>), enabling full understanding of pros and cons when choosing implementation (<span><math><mi>J</mi></math></span><em><sup>mpl</sup></em>) options in future networks (<em>n<sup>et</sup>’s</em>).</p><p>To further encourage the <em>n<sup>et</sup></em> designers to consider <em>q-</em> solutions for future <em>n<sup>et</sup></em> ‘s, the paper presents original, fundamental research work on LEO satellite <em>n<sup>et</sup></em> optimization (<span><math><mi>O</mi></math></span><em><sup>ptmz</sup></em>) <span><math><mi>A</mi></math></span><em><sup>lgrt</sup></em> ‘s for global QKD. The solutions using exclusively LEO orbits instead the combinations of LEO and GEO orbits, considered so far, enable up to two orders of magnitude power savings which is of importance when it comes to <span><math><mi>J</mi></math></span><em><sup>mpl</sup></em> of the <em>n<sup>et</sup></em> using power constrained terminals. The <span><math><mi>A</mi></math></span><em><sup>lgrt</sup></em> ‘s are designed for using <em>q-</em> Search <span><math><mi>A</mi></math></span><em><sup>lgrt</sup></em> ‘s (QSA), like Grover <span><math><mi>A</mi></math></span><em><sup>lgrt</sup></em>, and <em>q-</em> Approximate (<em>a<sup>prx</sup></em>) <span><math><mi>O</mi></math></span><em><sup>ptmz</sup></em> -<span><math><mi>A</mi></math></span><em><sup>lgrt</sup></em> ‘s (QAOA), especially powerful for solving combinatorial <span><math><mi>O</mi></math></span><em><sup>ptmz</sup></em> -<em>p<sup>rblm</sup></em> ‘s. <em>Index Terms: PQC, QC, QKD.</em></p></div>\",\"PeriodicalId\":100351,\"journal\":{\"name\":\"Cyber Security and Applications\",\"volume\":\"2 \",\"pages\":\"Article 100039\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2772918424000055/pdfft?md5=6213b526fd4d6089b8bf1b65aa6fb038&pid=1-s2.0-S2772918424000055-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cyber Security and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772918424000055\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cyber Security and Applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772918424000055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近年来,经典密码学(crypt)方案(sche)因量子(q)计算机的实际成果而受到破坏。如今,这些加密算法可以利用肖尔方法进行破解。本文对所谓的后量子密码(PQC)加密算法进行了详细研究,这些算法基于不同的原理,最大限度地减少了量子计算机进步带来的威胁。尽管如此,后 q 加密算法并不能彻底解决问题(prblm),而是代表了一种临时解决方案(rprs)。另一方面,本文讨论的 q 加密(QC)和 q 密钥分发(QKD)提供了终极解决方案:依靠 q 状态(Stat's)之间的纠缠(Egle)。至少在开始阶段,这两种安全(S)方案之间会有竞争,因此本文对 QC 和 PQC 算法(Algrt's)进行了全面调查,以便在未来网络(net's)中选择实施(Jmpl)方案时充分了解利弊。为了进一步鼓励网络设计者考虑未来网络的 Q 解决方案,本文介绍了针对全球 QKD 的低地轨道卫星网络优化(Optmz)Algrt's 的原创性基础研究工作。这些解决方案完全使用低地轨道,而不是迄今为止考虑过的低地轨道和地球同步轨道的组合,能够节省高达两个数量级的功率,这对于使用功率受限终端的网络的Jmpl来说非常重要。Algrt's是为使用q-搜索Algrt's(QSA)(如Grover Algrt)和q-近似(aprx)Optmz-Algrt's(QAOA)而设计的,尤其适用于求解组合Optmz-prblm's。索引术语:PQC, QC, QKD.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantum vs post‐quantum security for future networks: Survey

Classical cryptography (crypt) schemes (sche) have been compromised by the practical results on quantum (q) computers in recent years. Nowadays these sche ‘s can be compromised by using the Shor's methodology. This paper provides a detailed survey of the work on so called post‐ q crypt (PQC) sche ‘s, which are based on different principles, minimizing the threats coming from advances of q- computers. Even so, post- q- sche ‘s do not completely solve the problem (prblm) but rather represent (rprs) a temporary solution. On the other hand, q- crypt (QC) and q- key distribution (distr) (QKD), discussed in this paper, offer the ultimate solution: by relying on entanglement (Egle) between q- states (Stat’s). At least in the beginning, a competition is anticipated between the two approaches to security (S) sche ‘s, so the paper provides comprehensive survey of both QC and PQC algorithms (Algrt’s), enabling full understanding of pros and cons when choosing implementation (Jmpl) options in future networks (net’s).

To further encourage the net designers to consider q- solutions for future net ‘s, the paper presents original, fundamental research work on LEO satellite net optimization (Optmz) Algrt ‘s for global QKD. The solutions using exclusively LEO orbits instead the combinations of LEO and GEO orbits, considered so far, enable up to two orders of magnitude power savings which is of importance when it comes to Jmpl of the net using power constrained terminals. The Algrt ‘s are designed for using q- Search Algrt ‘s (QSA), like Grover Algrt, and q- Approximate (aprx) Optmz -Algrt ‘s (QAOA), especially powerful for solving combinatorial Optmz -prblm ‘s. Index Terms: PQC, QC, QKD.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信