多代理立方体卡尔曼优化器:解决数值优化问题的新型元启发式算法

Zulkifli Musa , Zuwairie Ibrahim , Mohd Ibrahim Shapiai
{"title":"多代理立方体卡尔曼优化器:解决数值优化问题的新型元启发式算法","authors":"Zulkifli Musa ,&nbsp;Zuwairie Ibrahim ,&nbsp;Mohd Ibrahim Shapiai","doi":"10.1016/j.ijcce.2024.03.003","DOIUrl":null,"url":null,"abstract":"<div><p>Optimization problems arise in diverse fields such as engineering, economics, and industry. Metaheuristic algorithms, including the Simulated Kalman Filter (SKF), have been developed to solve these problems. SKF, inspired by the Kalman Filter (KF) in control engineering, requires three parameters (initial error covariance <span><math><mrow><mi>P</mi><mo>(</mo><mn>0</mn><mo>)</mo></mrow></math></span>, measurement noise <span><math><mi>Q</mi></math></span>, and process noise <span><math><mi>R</mi></math></span>). However, studies have yet to focus on tuning these parameters. Furthermore, no significant improvement is shown by the parameter-less SKF (with randomized <span><math><mrow><mi>P</mi><mo>(</mo><mn>0</mn><mo>)</mo></mrow></math></span>, <span><math><mi>Q</mi></math></span>, and <span><math><mi>R</mi></math></span>). Randomly choosing values between 0 and 1 may lead to too small values. As an estimator, KF raises concerns with excessively small <span><math><mi>Q</mi></math></span> and <span><math><mi>R</mi></math></span> values, which can introduce numerical stability issues and result in unreliable outcomes. Tuning parameters for SKF is a challenging and time-consuming task. The Multi-Agent Cubature Kalman Filter (MACKO), inspired by the Cubature Kalman filter (CKF), was introduced in this work. The nature of the Cubature Kalman filter (CKF) allows the use of small values for parameters <span><math><mrow><mi>P</mi><mo>(</mo><mn>0</mn><mo>)</mo></mrow></math></span>, <span><math><mi>Q</mi></math></span>, and <span><math><mi>R</mi></math></span>. In the MACKO algorithm, Cubature Transformation Techniques (CTT) are employed. CTT can use small values for parameters <span><math><mrow><mi>P</mi><mo>(</mo><mn>0</mn><mo>)</mo></mrow></math></span>, <span><math><mi>Q</mi></math></span>, and <span><math><mi>R</mi></math></span>, so CKF was developed to overcome KF and other estimation algorithms. Moreover, in CTT, the term local neighborhoods is used to propagate the cubature point in local search, where the radius, <span><math><mi>δ</mi></math></span>, of local search is updated in every iteration to balance between the exploration and exploitation processes. MACKO is evaluated on the CEC 2014 benchmark suite with 30 optimization problems, and its performance is compared with nine existing metaheuristic algorithms. Simulation results demonstrate that MACKO is superior, outperforming the benchmark algorithms, as indicated by Friedman's test with a 5 % significance level.</p></div>","PeriodicalId":100694,"journal":{"name":"International Journal of Cognitive Computing in Engineering","volume":"5 ","pages":"Pages 140-152"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666307424000111/pdfft?md5=ee0644b08d3b1054f7635b0ee37851bc&pid=1-s2.0-S2666307424000111-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Multi-Agent cubature Kalman optimizer: A novel metaheuristic algorithm for solving numerical optimization problems\",\"authors\":\"Zulkifli Musa ,&nbsp;Zuwairie Ibrahim ,&nbsp;Mohd Ibrahim Shapiai\",\"doi\":\"10.1016/j.ijcce.2024.03.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Optimization problems arise in diverse fields such as engineering, economics, and industry. Metaheuristic algorithms, including the Simulated Kalman Filter (SKF), have been developed to solve these problems. SKF, inspired by the Kalman Filter (KF) in control engineering, requires three parameters (initial error covariance <span><math><mrow><mi>P</mi><mo>(</mo><mn>0</mn><mo>)</mo></mrow></math></span>, measurement noise <span><math><mi>Q</mi></math></span>, and process noise <span><math><mi>R</mi></math></span>). However, studies have yet to focus on tuning these parameters. Furthermore, no significant improvement is shown by the parameter-less SKF (with randomized <span><math><mrow><mi>P</mi><mo>(</mo><mn>0</mn><mo>)</mo></mrow></math></span>, <span><math><mi>Q</mi></math></span>, and <span><math><mi>R</mi></math></span>). Randomly choosing values between 0 and 1 may lead to too small values. As an estimator, KF raises concerns with excessively small <span><math><mi>Q</mi></math></span> and <span><math><mi>R</mi></math></span> values, which can introduce numerical stability issues and result in unreliable outcomes. Tuning parameters for SKF is a challenging and time-consuming task. The Multi-Agent Cubature Kalman Filter (MACKO), inspired by the Cubature Kalman filter (CKF), was introduced in this work. The nature of the Cubature Kalman filter (CKF) allows the use of small values for parameters <span><math><mrow><mi>P</mi><mo>(</mo><mn>0</mn><mo>)</mo></mrow></math></span>, <span><math><mi>Q</mi></math></span>, and <span><math><mi>R</mi></math></span>. In the MACKO algorithm, Cubature Transformation Techniques (CTT) are employed. CTT can use small values for parameters <span><math><mrow><mi>P</mi><mo>(</mo><mn>0</mn><mo>)</mo></mrow></math></span>, <span><math><mi>Q</mi></math></span>, and <span><math><mi>R</mi></math></span>, so CKF was developed to overcome KF and other estimation algorithms. Moreover, in CTT, the term local neighborhoods is used to propagate the cubature point in local search, where the radius, <span><math><mi>δ</mi></math></span>, of local search is updated in every iteration to balance between the exploration and exploitation processes. MACKO is evaluated on the CEC 2014 benchmark suite with 30 optimization problems, and its performance is compared with nine existing metaheuristic algorithms. Simulation results demonstrate that MACKO is superior, outperforming the benchmark algorithms, as indicated by Friedman's test with a 5 % significance level.</p></div>\",\"PeriodicalId\":100694,\"journal\":{\"name\":\"International Journal of Cognitive Computing in Engineering\",\"volume\":\"5 \",\"pages\":\"Pages 140-152\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666307424000111/pdfft?md5=ee0644b08d3b1054f7635b0ee37851bc&pid=1-s2.0-S2666307424000111-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Cognitive Computing in Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666307424000111\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Cognitive Computing in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666307424000111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

优化问题出现在工程、经济和工业等不同领域。为了解决这些问题,人们开发了元启发式算法,包括模拟卡尔曼滤波器(SKF)。SKF 受到控制工程中卡尔曼滤波器(KF)的启发,需要三个参数(初始误差协方差 P(0)、测量噪声 Q 和过程噪声 R)。然而,目前的研究还没有把重点放在调整这些参数上。此外,无参数 SKF(随机 P(0)、Q 和 R)也没有显示出明显的改进。在 0 和 1 之间随机选择数值可能会导致数值过小。作为一种估算器,KF 在 Q 值和 R 值过小时会引起关注,这可能会带来数值稳定性问题,导致结果不可靠。调整 SKF 的参数是一项具有挑战性且耗时的任务。本研究受立体卡尔曼滤波器(CKF)的启发,引入了多代理立体卡尔曼滤波器(MACKO)。立方卡尔曼滤波器(CKF)的特性允许使用较小的参数值 P(0)、Q 和 R。CTT 可以使用较小的参数 P(0)、Q 和 R 值,因此 CKF 是为了克服 KF 和其他估计算法而开发的。此外,在 CTT 中,局部邻域一词用于在局部搜索中传播立方点,局部搜索的半径 δ 在每次迭代中都会更新,以平衡探索和利用过程。MACKO 在 CEC 2014 基准套件的 30 个优化问题上进行了评估,并将其性能与现有的九种元启发式算法进行了比较。仿真结果表明,MACKO 的性能优于基准算法,弗里德曼检验(显著性水平为 5%)表明了这一点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-Agent cubature Kalman optimizer: A novel metaheuristic algorithm for solving numerical optimization problems

Optimization problems arise in diverse fields such as engineering, economics, and industry. Metaheuristic algorithms, including the Simulated Kalman Filter (SKF), have been developed to solve these problems. SKF, inspired by the Kalman Filter (KF) in control engineering, requires three parameters (initial error covariance P(0), measurement noise Q, and process noise R). However, studies have yet to focus on tuning these parameters. Furthermore, no significant improvement is shown by the parameter-less SKF (with randomized P(0), Q, and R). Randomly choosing values between 0 and 1 may lead to too small values. As an estimator, KF raises concerns with excessively small Q and R values, which can introduce numerical stability issues and result in unreliable outcomes. Tuning parameters for SKF is a challenging and time-consuming task. The Multi-Agent Cubature Kalman Filter (MACKO), inspired by the Cubature Kalman filter (CKF), was introduced in this work. The nature of the Cubature Kalman filter (CKF) allows the use of small values for parameters P(0), Q, and R. In the MACKO algorithm, Cubature Transformation Techniques (CTT) are employed. CTT can use small values for parameters P(0), Q, and R, so CKF was developed to overcome KF and other estimation algorithms. Moreover, in CTT, the term local neighborhoods is used to propagate the cubature point in local search, where the radius, δ, of local search is updated in every iteration to balance between the exploration and exploitation processes. MACKO is evaluated on the CEC 2014 benchmark suite with 30 optimization problems, and its performance is compared with nine existing metaheuristic algorithms. Simulation results demonstrate that MACKO is superior, outperforming the benchmark algorithms, as indicated by Friedman's test with a 5 % significance level.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
13.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信