CellViT:用于精确细胞分割和分类的视觉转换器

IF 10.7 1区 医学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Fabian Hörst , Moritz Rempe , Lukas Heine , Constantin Seibold , Julius Keyl , Giulia Baldini , Selma Ugurel , Jens Siveke , Barbara Grünwald , Jan Egger , Jens Kleesiek
{"title":"CellViT:用于精确细胞分割和分类的视觉转换器","authors":"Fabian Hörst ,&nbsp;Moritz Rempe ,&nbsp;Lukas Heine ,&nbsp;Constantin Seibold ,&nbsp;Julius Keyl ,&nbsp;Giulia Baldini ,&nbsp;Selma Ugurel ,&nbsp;Jens Siveke ,&nbsp;Barbara Grünwald ,&nbsp;Jan Egger ,&nbsp;Jens Kleesiek","doi":"10.1016/j.media.2024.103143","DOIUrl":null,"url":null,"abstract":"<div><p>Nuclei detection and segmentation in hematoxylin and eosin-stained (H&amp;E) tissue images are important clinical tasks and crucial for a wide range of applications. However, it is a challenging task due to nuclei variances in staining and size, overlapping boundaries, and nuclei clustering. While convolutional neural networks have been extensively used for this task, we explore the potential of Transformer-based networks in combination with large scale pre-training in this domain. Therefore, we introduce a new method for automated instance segmentation of cell nuclei in digitized tissue samples using a deep learning architecture based on Vision Transformer called CellViT. CellViT is trained and evaluated on the PanNuke dataset, which is one of the most challenging nuclei instance segmentation datasets, consisting of nearly 200,000 annotated nuclei into 5 clinically important classes in 19 tissue types. We demonstrate the superiority of large-scale in-domain and out-of-domain pre-trained Vision Transformers by leveraging the recently published <em>Segment Anything Model</em> and a ViT-encoder pre-trained on 104 million histological image patches — achieving state-of-the-art nuclei detection and instance segmentation performance on the PanNuke dataset with a mean panoptic quality of 0.50 and an <span><math><msub><mrow><mi>F</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>-detection score of 0.83. The code is publicly available at <span>https://github.com/TIO-IKIM/CellViT</span><svg><path></path></svg>.</p></div>","PeriodicalId":18328,"journal":{"name":"Medical image analysis","volume":"94 ","pages":"Article 103143"},"PeriodicalIF":10.7000,"publicationDate":"2024-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1361841524000689/pdfft?md5=46fcd2cc27812024574d4d5479fe2cb8&pid=1-s2.0-S1361841524000689-main.pdf","citationCount":"0","resultStr":"{\"title\":\"CellViT: Vision Transformers for precise cell segmentation and classification\",\"authors\":\"Fabian Hörst ,&nbsp;Moritz Rempe ,&nbsp;Lukas Heine ,&nbsp;Constantin Seibold ,&nbsp;Julius Keyl ,&nbsp;Giulia Baldini ,&nbsp;Selma Ugurel ,&nbsp;Jens Siveke ,&nbsp;Barbara Grünwald ,&nbsp;Jan Egger ,&nbsp;Jens Kleesiek\",\"doi\":\"10.1016/j.media.2024.103143\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Nuclei detection and segmentation in hematoxylin and eosin-stained (H&amp;E) tissue images are important clinical tasks and crucial for a wide range of applications. However, it is a challenging task due to nuclei variances in staining and size, overlapping boundaries, and nuclei clustering. While convolutional neural networks have been extensively used for this task, we explore the potential of Transformer-based networks in combination with large scale pre-training in this domain. Therefore, we introduce a new method for automated instance segmentation of cell nuclei in digitized tissue samples using a deep learning architecture based on Vision Transformer called CellViT. CellViT is trained and evaluated on the PanNuke dataset, which is one of the most challenging nuclei instance segmentation datasets, consisting of nearly 200,000 annotated nuclei into 5 clinically important classes in 19 tissue types. We demonstrate the superiority of large-scale in-domain and out-of-domain pre-trained Vision Transformers by leveraging the recently published <em>Segment Anything Model</em> and a ViT-encoder pre-trained on 104 million histological image patches — achieving state-of-the-art nuclei detection and instance segmentation performance on the PanNuke dataset with a mean panoptic quality of 0.50 and an <span><math><msub><mrow><mi>F</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>-detection score of 0.83. The code is publicly available at <span>https://github.com/TIO-IKIM/CellViT</span><svg><path></path></svg>.</p></div>\",\"PeriodicalId\":18328,\"journal\":{\"name\":\"Medical image analysis\",\"volume\":\"94 \",\"pages\":\"Article 103143\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2024-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1361841524000689/pdfft?md5=46fcd2cc27812024574d4d5479fe2cb8&pid=1-s2.0-S1361841524000689-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical image analysis\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1361841524000689\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical image analysis","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1361841524000689","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

苏木精和伊红染色(H&E)组织图像中的细胞核检测和分割是一项重要的临床任务,对广泛的应用至关重要。然而,由于细胞核在染色和大小上的差异、边界重叠以及细胞核聚类,这是一项具有挑战性的任务。虽然卷积神经网络已被广泛用于这项任务,但我们仍在探索基于 Transformer 的网络与大规模预训练相结合在这一领域的潜力。因此,我们引入了一种新方法,利用基于 Vision Transformer 的深度学习架构(称为 CellViT)对数字化组织样本中的细胞核进行自动实例分割。CellViT 在 PanNuke 数据集上进行了训练和评估,该数据集是最具挑战性的细胞核实例分割数据集之一,由 19 种组织类型中 5 个临床重要类别的近 20 万个细胞核组成。我们利用最近发布的 "任意分割模型"(Segment Anything Model)和在 1.04 亿个组织学图像斑块上预先训练的 ViT 编码器,证明了大规模域内和域外预训练视觉变换器的优越性--在 PanNuke 数据集上实现了一流的细胞核检测和实例分割性能,平均泛视质量为 0.50,F1 检测得分为 0.83。代码可在 https://github.com/TIO-IKIM/CellViT 上公开获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

CellViT: Vision Transformers for precise cell segmentation and classification

CellViT: Vision Transformers for precise cell segmentation and classification

Nuclei detection and segmentation in hematoxylin and eosin-stained (H&E) tissue images are important clinical tasks and crucial for a wide range of applications. However, it is a challenging task due to nuclei variances in staining and size, overlapping boundaries, and nuclei clustering. While convolutional neural networks have been extensively used for this task, we explore the potential of Transformer-based networks in combination with large scale pre-training in this domain. Therefore, we introduce a new method for automated instance segmentation of cell nuclei in digitized tissue samples using a deep learning architecture based on Vision Transformer called CellViT. CellViT is trained and evaluated on the PanNuke dataset, which is one of the most challenging nuclei instance segmentation datasets, consisting of nearly 200,000 annotated nuclei into 5 clinically important classes in 19 tissue types. We demonstrate the superiority of large-scale in-domain and out-of-domain pre-trained Vision Transformers by leveraging the recently published Segment Anything Model and a ViT-encoder pre-trained on 104 million histological image patches — achieving state-of-the-art nuclei detection and instance segmentation performance on the PanNuke dataset with a mean panoptic quality of 0.50 and an F1-detection score of 0.83. The code is publicly available at https://github.com/TIO-IKIM/CellViT.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Medical image analysis
Medical image analysis 工程技术-工程:生物医学
CiteScore
22.10
自引率
6.40%
发文量
309
审稿时长
6.6 months
期刊介绍: Medical Image Analysis serves as a platform for sharing new research findings in the realm of medical and biological image analysis, with a focus on applications of computer vision, virtual reality, and robotics to biomedical imaging challenges. The journal prioritizes the publication of high-quality, original papers contributing to the fundamental science of processing, analyzing, and utilizing medical and biological images. It welcomes approaches utilizing biomedical image datasets across all spatial scales, from molecular/cellular imaging to tissue/organ imaging.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信