轮毂电机驱动电动汽车主动悬架系统的随机采样数据多目标控制

Iftikhar Ahmad, Xiaohua Ge, Qing-Long Han
{"title":"轮毂电机驱动电动汽车主动悬架系统的随机采样数据多目标控制","authors":"Iftikhar Ahmad,&nbsp;Xiaohua Ge,&nbsp;Qing-Long Han","doi":"10.1016/j.jai.2023.12.002","DOIUrl":null,"url":null,"abstract":"<div><p>This paper addresses the sampled-data multi-objective active suspension control problem for an in-wheel motor driven electric vehicle subject to stochastic sampling periods and asynchronous premise variables. The focus is placed on the scenario that the dynamical state of the half-vehicle active suspension system is transmitted over an in-vehicle controller area network that only permits the transmission of sampled data packets. For this purpose, a stochastic sampling mechanism is developed such that the sampling periods can randomly switch among different values with certain mathematical probabilities. Then, an asynchronous fuzzy sampled-data controller, featuring distinct premise variables from the active suspension system, is constructed to eliminate the stringent requirement that the sampled-data controller has to share the same grades of membership. Furthermore, novel criteria for both stability analysis and controller design are derived in order to guarantee that the resultant closed-loop active suspension system is stochastically stable with simultaneous <span><math><msub><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>∞</mi></mrow></msub></math></span> performance requirements. Finally, the effectiveness of the proposed stochastic sampled-data multi-objective control method is verified via several numerical cases studies in both time domain and frequency domain under various road disturbance profiles.</p></div>","PeriodicalId":100755,"journal":{"name":"Journal of Automation and Intelligence","volume":"3 1","pages":"Pages 2-18"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949855423000588/pdfft?md5=ff0ade3f22bb12125122c96483204edf&pid=1-s2.0-S2949855423000588-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Stochastic sampled-data multi-objective control of active suspension systems for in-wheel motor driven electric vehicles\",\"authors\":\"Iftikhar Ahmad,&nbsp;Xiaohua Ge,&nbsp;Qing-Long Han\",\"doi\":\"10.1016/j.jai.2023.12.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper addresses the sampled-data multi-objective active suspension control problem for an in-wheel motor driven electric vehicle subject to stochastic sampling periods and asynchronous premise variables. The focus is placed on the scenario that the dynamical state of the half-vehicle active suspension system is transmitted over an in-vehicle controller area network that only permits the transmission of sampled data packets. For this purpose, a stochastic sampling mechanism is developed such that the sampling periods can randomly switch among different values with certain mathematical probabilities. Then, an asynchronous fuzzy sampled-data controller, featuring distinct premise variables from the active suspension system, is constructed to eliminate the stringent requirement that the sampled-data controller has to share the same grades of membership. Furthermore, novel criteria for both stability analysis and controller design are derived in order to guarantee that the resultant closed-loop active suspension system is stochastically stable with simultaneous <span><math><msub><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>∞</mi></mrow></msub></math></span> performance requirements. Finally, the effectiveness of the proposed stochastic sampled-data multi-objective control method is verified via several numerical cases studies in both time domain and frequency domain under various road disturbance profiles.</p></div>\",\"PeriodicalId\":100755,\"journal\":{\"name\":\"Journal of Automation and Intelligence\",\"volume\":\"3 1\",\"pages\":\"Pages 2-18\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2949855423000588/pdfft?md5=ff0ade3f22bb12125122c96483204edf&pid=1-s2.0-S2949855423000588-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Automation and Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949855423000588\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Automation and Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949855423000588","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文探讨了轮内电机驱动电动汽车的采样数据多目标主动悬架控制问题,该问题受随机采样周期和异步前提变量的影响。重点是半车主动悬架系统的动态状态通过车载控制器区域网络传输的情况,该网络只允许传输采样数据包。为此,开发了一种随机采样机制,使采样周期能以一定的数学概率在不同值之间随机切换。然后,构建了一个异步模糊采样数据控制器,其特点是与主动悬挂系统的前提变量不同,从而消除了采样数据控制器必须具有相同成员等级的严格要求。此外,还推导出了稳定性分析和控制器设计的新标准,以保证由此产生的闭环主动悬架系统具有随机稳定性,同时满足 H2 和 H∞ 性能要求。最后,在各种路面扰动情况下,通过多个时域和频域数值案例研究,验证了所提出的随机采样数据多目标控制方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stochastic sampled-data multi-objective control of active suspension systems for in-wheel motor driven electric vehicles

This paper addresses the sampled-data multi-objective active suspension control problem for an in-wheel motor driven electric vehicle subject to stochastic sampling periods and asynchronous premise variables. The focus is placed on the scenario that the dynamical state of the half-vehicle active suspension system is transmitted over an in-vehicle controller area network that only permits the transmission of sampled data packets. For this purpose, a stochastic sampling mechanism is developed such that the sampling periods can randomly switch among different values with certain mathematical probabilities. Then, an asynchronous fuzzy sampled-data controller, featuring distinct premise variables from the active suspension system, is constructed to eliminate the stringent requirement that the sampled-data controller has to share the same grades of membership. Furthermore, novel criteria for both stability analysis and controller design are derived in order to guarantee that the resultant closed-loop active suspension system is stochastically stable with simultaneous H2 and H performance requirements. Finally, the effectiveness of the proposed stochastic sampled-data multi-objective control method is verified via several numerical cases studies in both time domain and frequency domain under various road disturbance profiles.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信