Yu Wang , Mirko Pasquini , Véronique Chotteau , Håkan Hjalmarsson , Elling W. Jacobsen
{"title":"迭代学习稳健优化--应用于连续单克隆抗体生产中 CHO 细胞培养的培养基优化","authors":"Yu Wang , Mirko Pasquini , Véronique Chotteau , Håkan Hjalmarsson , Elling W. Jacobsen","doi":"10.1016/j.jprocont.2024.103196","DOIUrl":null,"url":null,"abstract":"<div><p>In the presence of uncertainty, the optimum obtained based on a nominal identified model can neither provide any performance guarantee nor ensure that critical constraints are satisfied, which is crucial for e.g., bioprocess applications characterized by a high degree of complexity combined with costly experiments. Hence, uncertainty should be considered in the optimization and, furthermore, experiments designed to reduce the uncertainty most important for optimization. Herein, we propose a general framework that combines model-based robust optimization with optimal experiment design. The proposed framework can take advantage of prior knowledge in the form of a mechanistic model structure, and the importance of this is demonstrated by comparing it to more standard black-box models typically employed in learning. Through optimal experiment design, we repeatedly reduce the uncertainty most relevant for optimization so as to maximize the potential for improving the worst-case performance by balancing between exploration and exploitation. This makes the proposed method an efficient model-based robust optimization framework, especially in cases with limited experimental resources. The main part of the paper focuses on the case with modeling uncertainty that can be reduced with the availability of more experimental data. Towards the end of the paper, we consider extending the method to also include inherent uncertainty, such as input uncertainty and unmeasured disturbances. The effectiveness of the method is illustrated through a realistic simulation case study of medium optimization of Chinese hamster ovary cell cultivation in continuous monoclonal antibody production, where the metabolic network consists of 23 extracellular metabolites and 126 reactions.</p></div>","PeriodicalId":50079,"journal":{"name":"Journal of Process Control","volume":"137 ","pages":"Article 103196"},"PeriodicalIF":3.3000,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0959152424000362/pdfft?md5=b6cb3ace2a2cc00cf19f27c14d2918ee&pid=1-s2.0-S0959152424000362-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Iterative learning robust optimization - with application to medium optimization of CHO cell cultivation in continuous monoclonal antibody production\",\"authors\":\"Yu Wang , Mirko Pasquini , Véronique Chotteau , Håkan Hjalmarsson , Elling W. Jacobsen\",\"doi\":\"10.1016/j.jprocont.2024.103196\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the presence of uncertainty, the optimum obtained based on a nominal identified model can neither provide any performance guarantee nor ensure that critical constraints are satisfied, which is crucial for e.g., bioprocess applications characterized by a high degree of complexity combined with costly experiments. Hence, uncertainty should be considered in the optimization and, furthermore, experiments designed to reduce the uncertainty most important for optimization. Herein, we propose a general framework that combines model-based robust optimization with optimal experiment design. The proposed framework can take advantage of prior knowledge in the form of a mechanistic model structure, and the importance of this is demonstrated by comparing it to more standard black-box models typically employed in learning. Through optimal experiment design, we repeatedly reduce the uncertainty most relevant for optimization so as to maximize the potential for improving the worst-case performance by balancing between exploration and exploitation. This makes the proposed method an efficient model-based robust optimization framework, especially in cases with limited experimental resources. The main part of the paper focuses on the case with modeling uncertainty that can be reduced with the availability of more experimental data. Towards the end of the paper, we consider extending the method to also include inherent uncertainty, such as input uncertainty and unmeasured disturbances. The effectiveness of the method is illustrated through a realistic simulation case study of medium optimization of Chinese hamster ovary cell cultivation in continuous monoclonal antibody production, where the metabolic network consists of 23 extracellular metabolites and 126 reactions.</p></div>\",\"PeriodicalId\":50079,\"journal\":{\"name\":\"Journal of Process Control\",\"volume\":\"137 \",\"pages\":\"Article 103196\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0959152424000362/pdfft?md5=b6cb3ace2a2cc00cf19f27c14d2918ee&pid=1-s2.0-S0959152424000362-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Process Control\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0959152424000362\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Process Control","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959152424000362","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Iterative learning robust optimization - with application to medium optimization of CHO cell cultivation in continuous monoclonal antibody production
In the presence of uncertainty, the optimum obtained based on a nominal identified model can neither provide any performance guarantee nor ensure that critical constraints are satisfied, which is crucial for e.g., bioprocess applications characterized by a high degree of complexity combined with costly experiments. Hence, uncertainty should be considered in the optimization and, furthermore, experiments designed to reduce the uncertainty most important for optimization. Herein, we propose a general framework that combines model-based robust optimization with optimal experiment design. The proposed framework can take advantage of prior knowledge in the form of a mechanistic model structure, and the importance of this is demonstrated by comparing it to more standard black-box models typically employed in learning. Through optimal experiment design, we repeatedly reduce the uncertainty most relevant for optimization so as to maximize the potential for improving the worst-case performance by balancing between exploration and exploitation. This makes the proposed method an efficient model-based robust optimization framework, especially in cases with limited experimental resources. The main part of the paper focuses on the case with modeling uncertainty that can be reduced with the availability of more experimental data. Towards the end of the paper, we consider extending the method to also include inherent uncertainty, such as input uncertainty and unmeasured disturbances. The effectiveness of the method is illustrated through a realistic simulation case study of medium optimization of Chinese hamster ovary cell cultivation in continuous monoclonal antibody production, where the metabolic network consists of 23 extracellular metabolites and 126 reactions.
期刊介绍:
This international journal covers the application of control theory, operations research, computer science and engineering principles to the solution of process control problems. In addition to the traditional chemical processing and manufacturing applications, the scope of process control problems involves a wide range of applications that includes energy processes, nano-technology, systems biology, bio-medical engineering, pharmaceutical processing technology, energy storage and conversion, smart grid, and data analytics among others.
Papers on the theory in these areas will also be accepted provided the theoretical contribution is aimed at the application and the development of process control techniques.
Topics covered include:
• Control applications• Process monitoring• Plant-wide control• Process control systems• Control techniques and algorithms• Process modelling and simulation• Design methods
Advanced design methods exclude well established and widely studied traditional design techniques such as PID tuning and its many variants. Applications in fields such as control of automotive engines, machinery and robotics are not deemed suitable unless a clear motivation for the relevance to process control is provided.