组织特异性表观遗传时钟的实施进展如何?

IF 2.8 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Frontiers in bioinformatics Pub Date : 2024-03-04 eCollection Date: 2024-01-01 DOI:10.3389/fbinf.2024.1306244
Claudia Sala, Pietro Di Lena, Danielle Fernandes Durso, Italo Faria do Valle, Maria Giulia Bacalini, Daniele Dall'Olio, Claudio Franceschi, Gastone Castellani, Paolo Garagnani, Christine Nardini
{"title":"组织特异性表观遗传时钟的实施进展如何?","authors":"Claudia Sala, Pietro Di Lena, Danielle Fernandes Durso, Italo Faria do Valle, Maria Giulia Bacalini, Daniele Dall'Olio, Claudio Franceschi, Gastone Castellani, Paolo Garagnani, Christine Nardini","doi":"10.3389/fbinf.2024.1306244","DOIUrl":null,"url":null,"abstract":"<p><p><b>Introduction:</b> DNA methylation clocks presents advantageous characteristics with respect to the ambitious goal of identifying very early markers of disease, based on the concept that accelerated ageing is a reliable predictor in this sense. <b>Methods:</b> Such tools, being epigenomic based, are expected to be conditioned by sex and tissue specificities, and this work is about quantifying this dependency as well as that from the regression model and the size of the training set. <b>Results:</b> Our quantitative results indicate that elastic-net penalization is the best performing strategy, and better so when-unsurprisingly-the data set is bigger; sex does not appear to condition clocks performances and tissue specific clocks appear to perform better than generic blood clocks. Finally, when considering all trained clocks, we identified a subset of genes that, to the best of our knowledge, have not been presented yet and might deserve further investigation: CPT1A, MMP15, SHROOM3, SLIT3, and SYNGR. <b>Conclusion:</b> These factual starting points can be useful for the future medical translation of clocks and in particular in the debate between multi-tissue clocks, generally trained on a large majority of blood samples, and tissue-specific clocks.</p>","PeriodicalId":73066,"journal":{"name":"Frontiers in bioinformatics","volume":"4 ","pages":"1306244"},"PeriodicalIF":2.8000,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10944965/pdf/","citationCount":"0","resultStr":"{\"title\":\"Where are we in the implementation of tissue-specific epigenetic clocks?\",\"authors\":\"Claudia Sala, Pietro Di Lena, Danielle Fernandes Durso, Italo Faria do Valle, Maria Giulia Bacalini, Daniele Dall'Olio, Claudio Franceschi, Gastone Castellani, Paolo Garagnani, Christine Nardini\",\"doi\":\"10.3389/fbinf.2024.1306244\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Introduction:</b> DNA methylation clocks presents advantageous characteristics with respect to the ambitious goal of identifying very early markers of disease, based on the concept that accelerated ageing is a reliable predictor in this sense. <b>Methods:</b> Such tools, being epigenomic based, are expected to be conditioned by sex and tissue specificities, and this work is about quantifying this dependency as well as that from the regression model and the size of the training set. <b>Results:</b> Our quantitative results indicate that elastic-net penalization is the best performing strategy, and better so when-unsurprisingly-the data set is bigger; sex does not appear to condition clocks performances and tissue specific clocks appear to perform better than generic blood clocks. Finally, when considering all trained clocks, we identified a subset of genes that, to the best of our knowledge, have not been presented yet and might deserve further investigation: CPT1A, MMP15, SHROOM3, SLIT3, and SYNGR. <b>Conclusion:</b> These factual starting points can be useful for the future medical translation of clocks and in particular in the debate between multi-tissue clocks, generally trained on a large majority of blood samples, and tissue-specific clocks.</p>\",\"PeriodicalId\":73066,\"journal\":{\"name\":\"Frontiers in bioinformatics\",\"volume\":\"4 \",\"pages\":\"1306244\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10944965/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in bioinformatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fbinf.2024.1306244\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fbinf.2024.1306244","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

导言DNA 甲基化时钟在确定疾病早期标志物的宏伟目标方面具有优势,其概念是加速衰老是可靠的预测指标。方法:这种基于表观基因组学的工具预计会受到性别和组织特异性的影响,这项工作就是要量化这种依赖性以及回归模型和训练集大小的影响。结果我们的量化结果表明,弹性网惩罚是性能最好的策略,而且在数据集越大的情况下效果越好,这一点不足为奇;性别似乎并不影响时钟的性能,而组织特异性时钟似乎比一般血液时钟性能更好。最后,在考虑所有训练有素的时钟时,我们发现了一个基因子集,据我们所知,这些基因子集尚未被提出,可能值得进一步研究:CPT1A、MMP15、SHROOM3、SLIT3 和 SYNGR。结论这些事实出发点对时钟未来的医学转化很有帮助,特别是在多组织时钟(通常在大多数血液样本上进行训练)和组织特异性时钟之间的争论中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Where are we in the implementation of tissue-specific epigenetic clocks?

Introduction: DNA methylation clocks presents advantageous characteristics with respect to the ambitious goal of identifying very early markers of disease, based on the concept that accelerated ageing is a reliable predictor in this sense. Methods: Such tools, being epigenomic based, are expected to be conditioned by sex and tissue specificities, and this work is about quantifying this dependency as well as that from the regression model and the size of the training set. Results: Our quantitative results indicate that elastic-net penalization is the best performing strategy, and better so when-unsurprisingly-the data set is bigger; sex does not appear to condition clocks performances and tissue specific clocks appear to perform better than generic blood clocks. Finally, when considering all trained clocks, we identified a subset of genes that, to the best of our knowledge, have not been presented yet and might deserve further investigation: CPT1A, MMP15, SHROOM3, SLIT3, and SYNGR. Conclusion: These factual starting points can be useful for the future medical translation of clocks and in particular in the debate between multi-tissue clocks, generally trained on a large majority of blood samples, and tissue-specific clocks.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信