Qingqing Zhu, Tejas Sudharshan Mathai, Pritam Mukherjee, Yifan Peng, Ronald M Summers, Zhiyong Lu
{"title":"利用纵向胸部 X 光片和报告预填放射科报告。","authors":"Qingqing Zhu, Tejas Sudharshan Mathai, Pritam Mukherjee, Yifan Peng, Ronald M Summers, Zhiyong Lu","doi":"10.1007/978-3-031-43904-9_19","DOIUrl":null,"url":null,"abstract":"<p><p>Despite the reduction in turn-around times in radiology reporting with the use of speech recognition software, persistent communication errors can significantly impact the interpretation of radiology reports. Pre-filling a radiology report holds promise in mitigating reporting errors, and despite multiple efforts in literature to generate comprehensive medical reports, there lacks approaches that exploit the longitudinal nature of patient visit records in the MIMIC-CXR dataset. To address this gap, we propose to use longitudinal multi-modal data, i.e., previous patient visit CXR, current visit CXR, and the previous visit report, to pre-fill the \"findings\" section of the patient's current visit. We first gathered the longitudinal visit information for 26,625 patients from the MIMIC-CXR dataset, and created a new dataset called <i>Longitudinal-MIMIC</i>. With this new dataset, a transformer-based model was trained to capture the multi-modal longitudinal information from patient visit records (CXR images + reports) via a cross-attention-based multi-modal fusion module and a hierarchical memory-driven decoder. In contrast to previous works that only uses current visit data as input to train a model, our work exploits the longitudinal information available to pre-fill the \"findings\" section of radiology reports. Experiments show that our approach outperforms several recent approaches by ≥3% on F1 score, and ≥2% for BLEU-4, METEOR and ROUGE-L respectively. Code will be published at https://github.com/CelestialShine/Longitudinal-Chest-X-Ray.</p>","PeriodicalId":94280,"journal":{"name":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10947431/pdf/","citationCount":"0","resultStr":"{\"title\":\"Utilizing Longitudinal Chest X-Rays and Reports to Pre-fill Radiology Reports.\",\"authors\":\"Qingqing Zhu, Tejas Sudharshan Mathai, Pritam Mukherjee, Yifan Peng, Ronald M Summers, Zhiyong Lu\",\"doi\":\"10.1007/978-3-031-43904-9_19\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Despite the reduction in turn-around times in radiology reporting with the use of speech recognition software, persistent communication errors can significantly impact the interpretation of radiology reports. Pre-filling a radiology report holds promise in mitigating reporting errors, and despite multiple efforts in literature to generate comprehensive medical reports, there lacks approaches that exploit the longitudinal nature of patient visit records in the MIMIC-CXR dataset. To address this gap, we propose to use longitudinal multi-modal data, i.e., previous patient visit CXR, current visit CXR, and the previous visit report, to pre-fill the \\\"findings\\\" section of the patient's current visit. We first gathered the longitudinal visit information for 26,625 patients from the MIMIC-CXR dataset, and created a new dataset called <i>Longitudinal-MIMIC</i>. With this new dataset, a transformer-based model was trained to capture the multi-modal longitudinal information from patient visit records (CXR images + reports) via a cross-attention-based multi-modal fusion module and a hierarchical memory-driven decoder. In contrast to previous works that only uses current visit data as input to train a model, our work exploits the longitudinal information available to pre-fill the \\\"findings\\\" section of radiology reports. Experiments show that our approach outperforms several recent approaches by ≥3% on F1 score, and ≥2% for BLEU-4, METEOR and ROUGE-L respectively. Code will be published at https://github.com/CelestialShine/Longitudinal-Chest-X-Ray.</p>\",\"PeriodicalId\":94280,\"journal\":{\"name\":\"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10947431/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/978-3-031-43904-9_19\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-031-43904-9_19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Utilizing Longitudinal Chest X-Rays and Reports to Pre-fill Radiology Reports.
Despite the reduction in turn-around times in radiology reporting with the use of speech recognition software, persistent communication errors can significantly impact the interpretation of radiology reports. Pre-filling a radiology report holds promise in mitigating reporting errors, and despite multiple efforts in literature to generate comprehensive medical reports, there lacks approaches that exploit the longitudinal nature of patient visit records in the MIMIC-CXR dataset. To address this gap, we propose to use longitudinal multi-modal data, i.e., previous patient visit CXR, current visit CXR, and the previous visit report, to pre-fill the "findings" section of the patient's current visit. We first gathered the longitudinal visit information for 26,625 patients from the MIMIC-CXR dataset, and created a new dataset called Longitudinal-MIMIC. With this new dataset, a transformer-based model was trained to capture the multi-modal longitudinal information from patient visit records (CXR images + reports) via a cross-attention-based multi-modal fusion module and a hierarchical memory-driven decoder. In contrast to previous works that only uses current visit data as input to train a model, our work exploits the longitudinal information available to pre-fill the "findings" section of radiology reports. Experiments show that our approach outperforms several recent approaches by ≥3% on F1 score, and ≥2% for BLEU-4, METEOR and ROUGE-L respectively. Code will be published at https://github.com/CelestialShine/Longitudinal-Chest-X-Ray.