肌电图通道计数的意义:提高假肢在线测试的模式识别能力。

IF 1.3 Q3 REHABILITATION
Frontiers in rehabilitation sciences Pub Date : 2024-03-04 eCollection Date: 2024-01-01 DOI:10.3389/fresc.2024.1345364
Ann M Simon, Keira Newkirk, Laura A Miller, Kristi L Turner, Kevin Brenner, Michael Stephens, Levi J Hargrove
{"title":"肌电图通道计数的意义:提高假肢在线测试的模式识别能力。","authors":"Ann M Simon, Keira Newkirk, Laura A Miller, Kristi L Turner, Kevin Brenner, Michael Stephens, Levi J Hargrove","doi":"10.3389/fresc.2024.1345364","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Myoelectric pattern recognition systems have shown promising control of upper limb powered prostheses and are now commercially available. These pattern recognition systems typically record from up to 8 muscle sites, whereas other control systems use two-site control. While previous offline studies have shown 8 or fewer sites to be optimal, real-time control was not evaluated.</p><p><strong>Methods: </strong>Six individuals with no limb absence and four individuals with a transradial amputation controlled a virtual upper limb prosthesis using pattern recognition control with 8 and 16 channels of EMG. Additionally, two of the individuals with a transradial amputation performed the Assessment for Capacity of Myoelectric Control (ACMC) with a multi-articulating hand and wrist prosthesis with the same channel count conditions.</p><p><strong>Results: </strong>Users had significant improvements in control when using 16 compared to 8 EMG channels including decreased classification error (<i>p</i> = 0.006), decreased completion time (<i>p</i> = 0.019), and increased path efficiency (<i>p</i> = 0.013) when controlling a virtual prosthesis. ACMC scores increased by more than three times the minimal detectable change from the 8 to the 16-channel condition.</p><p><strong>Discussion: </strong>The results of this study indicate that increasing EMG channel count beyond the clinical standard of 8 channels can benefit myoelectric pattern recognition users.</p>","PeriodicalId":73102,"journal":{"name":"Frontiers in rehabilitation sciences","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10944946/pdf/","citationCount":"0","resultStr":"{\"title\":\"Implications of EMG channel count: enhancing pattern recognition online prosthetic testing.\",\"authors\":\"Ann M Simon, Keira Newkirk, Laura A Miller, Kristi L Turner, Kevin Brenner, Michael Stephens, Levi J Hargrove\",\"doi\":\"10.3389/fresc.2024.1345364\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Myoelectric pattern recognition systems have shown promising control of upper limb powered prostheses and are now commercially available. These pattern recognition systems typically record from up to 8 muscle sites, whereas other control systems use two-site control. While previous offline studies have shown 8 or fewer sites to be optimal, real-time control was not evaluated.</p><p><strong>Methods: </strong>Six individuals with no limb absence and four individuals with a transradial amputation controlled a virtual upper limb prosthesis using pattern recognition control with 8 and 16 channels of EMG. Additionally, two of the individuals with a transradial amputation performed the Assessment for Capacity of Myoelectric Control (ACMC) with a multi-articulating hand and wrist prosthesis with the same channel count conditions.</p><p><strong>Results: </strong>Users had significant improvements in control when using 16 compared to 8 EMG channels including decreased classification error (<i>p</i> = 0.006), decreased completion time (<i>p</i> = 0.019), and increased path efficiency (<i>p</i> = 0.013) when controlling a virtual prosthesis. ACMC scores increased by more than three times the minimal detectable change from the 8 to the 16-channel condition.</p><p><strong>Discussion: </strong>The results of this study indicate that increasing EMG channel count beyond the clinical standard of 8 channels can benefit myoelectric pattern recognition users.</p>\",\"PeriodicalId\":73102,\"journal\":{\"name\":\"Frontiers in rehabilitation sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10944946/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in rehabilitation sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fresc.2024.1345364\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"REHABILITATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in rehabilitation sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fresc.2024.1345364","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"REHABILITATION","Score":null,"Total":0}
引用次数: 0

摘要

导言:肌电模式识别系统对上肢动力假肢的控制大有可为,目前已在市场上销售。这些模式识别系统通常记录多达 8 个肌肉部位,而其他控制系统则使用双部位控制。虽然以前的离线研究表明 8 个或更少的部位是最佳的,但没有对实时控制进行评估:方法:六名无肢体缺失者和四名经桡动脉截肢者使用模式识别控制系统和 8 个和 16 个肌电图通道控制虚拟上肢假肢。此外,其中两名经桡动脉截肢者在相同通道数条件下使用多关节手和腕部假肢进行了肌电控制能力评估(ACMC):与 8 个肌电通道相比,使用 16 个肌电通道的用户在控制方面有明显改善,包括在控制虚拟假肢时,分类错误减少(p = 0.006),完成时间缩短(p = 0.019),路径效率提高(p = 0.013)。从 8 个通道到 16 个通道,ACMC 分数增加了三倍多,达到了可检测到的最小变化:本研究结果表明,增加肌电图通道数,使其超过 8 个通道的临床标准,可使肌电模式识别用户受益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Implications of EMG channel count: enhancing pattern recognition online prosthetic testing.

Introduction: Myoelectric pattern recognition systems have shown promising control of upper limb powered prostheses and are now commercially available. These pattern recognition systems typically record from up to 8 muscle sites, whereas other control systems use two-site control. While previous offline studies have shown 8 or fewer sites to be optimal, real-time control was not evaluated.

Methods: Six individuals with no limb absence and four individuals with a transradial amputation controlled a virtual upper limb prosthesis using pattern recognition control with 8 and 16 channels of EMG. Additionally, two of the individuals with a transradial amputation performed the Assessment for Capacity of Myoelectric Control (ACMC) with a multi-articulating hand and wrist prosthesis with the same channel count conditions.

Results: Users had significant improvements in control when using 16 compared to 8 EMG channels including decreased classification error (p = 0.006), decreased completion time (p = 0.019), and increased path efficiency (p = 0.013) when controlling a virtual prosthesis. ACMC scores increased by more than three times the minimal detectable change from the 8 to the 16-channel condition.

Discussion: The results of this study indicate that increasing EMG channel count beyond the clinical standard of 8 channels can benefit myoelectric pattern recognition users.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信