Pauline Griffeuille, Souleiman El Balkhi, Sylvain Dulaurent, Franck Saint-Marcoux
{"title":"探针电喷雾离子化串联质谱法用于检测和定量苯并二氮杂卓。","authors":"Pauline Griffeuille, Souleiman El Balkhi, Sylvain Dulaurent, Franck Saint-Marcoux","doi":"10.1097/FTD.0000000000001189","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Legally prescribed benzodiazepines (BZDs) and designer BZDs are widely misused and must be determined in multiple contexts (eg, overdose, drug-facilitated sexual assaults, or driving under the influence of drugs). This study aimed to develop a method for measuring serum BZD levels using probe electrospray ionization (PESI) mass spectrometry and an isotope dilution approach.</p><p><strong>Methods: </strong>A tandem mass spectrometer equipped with a probe electrospray ionization source in multiple reaction monitoring mode was used. Isotope dilution was applied for quantification using a deuterated internal standard at a fixed concentration for alprazolam, bromazepam, diazepam, nordiazepam, oxazepam, temazepam, zolpidem, and zopiclone. This method included designer BZDs: clonazolam, deschloroetizolam, diclazepam, etizolam, flualprazolam, flubromazepam, flubromazolam, meclonazepam, nifoxipam, and pyrazolam. Sample preparation was done by mixing 10 µL of serum with 500 µL of an ethanol/ammonium formate 0.01 mol/L buffer. Complete validation was performed, and the method was compared with liquid chromatography coupled with mass spectrometry (LC-MS/MS) and immunoassays (IC) by analyzing 40 real samples.</p><p><strong>Results: </strong>The analysis time for identification and quantification of the 18 molecules was 2.5 minutes. This method was fully validated, and the limits of quantification varied from 5 to 50 mcg/L depending on the molecule. In the 40 real samples, 100% of molecules (n = 89) were detected by both LC-MS/MS and PESI-MS/MS, and regression analysis showed excellent agreement between the 2 methods (r 2 = 0.98). On IC, bromazepam and zolpidem were not detected in 2 and 1 cases, respectively.</p><p><strong>Conclusions: </strong>PESI-MS/MS allows serum BZD detection and measurement. Given the isotope dilution approach, a calibration curve was not required, and its performance was similar to that of LC-MS/MS, and its specificity was higher than that of IC.</p>","PeriodicalId":23052,"journal":{"name":"Therapeutic Drug Monitoring","volume":" ","pages":"522-529"},"PeriodicalIF":2.8000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Probe Electrospray Ionization Tandem Mass Spectrometry for the Detection and Quantification of Benzodiazepines.\",\"authors\":\"Pauline Griffeuille, Souleiman El Balkhi, Sylvain Dulaurent, Franck Saint-Marcoux\",\"doi\":\"10.1097/FTD.0000000000001189\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Legally prescribed benzodiazepines (BZDs) and designer BZDs are widely misused and must be determined in multiple contexts (eg, overdose, drug-facilitated sexual assaults, or driving under the influence of drugs). This study aimed to develop a method for measuring serum BZD levels using probe electrospray ionization (PESI) mass spectrometry and an isotope dilution approach.</p><p><strong>Methods: </strong>A tandem mass spectrometer equipped with a probe electrospray ionization source in multiple reaction monitoring mode was used. Isotope dilution was applied for quantification using a deuterated internal standard at a fixed concentration for alprazolam, bromazepam, diazepam, nordiazepam, oxazepam, temazepam, zolpidem, and zopiclone. This method included designer BZDs: clonazolam, deschloroetizolam, diclazepam, etizolam, flualprazolam, flubromazepam, flubromazolam, meclonazepam, nifoxipam, and pyrazolam. Sample preparation was done by mixing 10 µL of serum with 500 µL of an ethanol/ammonium formate 0.01 mol/L buffer. Complete validation was performed, and the method was compared with liquid chromatography coupled with mass spectrometry (LC-MS/MS) and immunoassays (IC) by analyzing 40 real samples.</p><p><strong>Results: </strong>The analysis time for identification and quantification of the 18 molecules was 2.5 minutes. This method was fully validated, and the limits of quantification varied from 5 to 50 mcg/L depending on the molecule. In the 40 real samples, 100% of molecules (n = 89) were detected by both LC-MS/MS and PESI-MS/MS, and regression analysis showed excellent agreement between the 2 methods (r 2 = 0.98). On IC, bromazepam and zolpidem were not detected in 2 and 1 cases, respectively.</p><p><strong>Conclusions: </strong>PESI-MS/MS allows serum BZD detection and measurement. Given the isotope dilution approach, a calibration curve was not required, and its performance was similar to that of LC-MS/MS, and its specificity was higher than that of IC.</p>\",\"PeriodicalId\":23052,\"journal\":{\"name\":\"Therapeutic Drug Monitoring\",\"volume\":\" \",\"pages\":\"522-529\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Therapeutic Drug Monitoring\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1097/FTD.0000000000001189\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/3/18 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICAL LABORATORY TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Therapeutic Drug Monitoring","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/FTD.0000000000001189","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/18 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MEDICAL LABORATORY TECHNOLOGY","Score":null,"Total":0}
Probe Electrospray Ionization Tandem Mass Spectrometry for the Detection and Quantification of Benzodiazepines.
Background: Legally prescribed benzodiazepines (BZDs) and designer BZDs are widely misused and must be determined in multiple contexts (eg, overdose, drug-facilitated sexual assaults, or driving under the influence of drugs). This study aimed to develop a method for measuring serum BZD levels using probe electrospray ionization (PESI) mass spectrometry and an isotope dilution approach.
Methods: A tandem mass spectrometer equipped with a probe electrospray ionization source in multiple reaction monitoring mode was used. Isotope dilution was applied for quantification using a deuterated internal standard at a fixed concentration for alprazolam, bromazepam, diazepam, nordiazepam, oxazepam, temazepam, zolpidem, and zopiclone. This method included designer BZDs: clonazolam, deschloroetizolam, diclazepam, etizolam, flualprazolam, flubromazepam, flubromazolam, meclonazepam, nifoxipam, and pyrazolam. Sample preparation was done by mixing 10 µL of serum with 500 µL of an ethanol/ammonium formate 0.01 mol/L buffer. Complete validation was performed, and the method was compared with liquid chromatography coupled with mass spectrometry (LC-MS/MS) and immunoassays (IC) by analyzing 40 real samples.
Results: The analysis time for identification and quantification of the 18 molecules was 2.5 minutes. This method was fully validated, and the limits of quantification varied from 5 to 50 mcg/L depending on the molecule. In the 40 real samples, 100% of molecules (n = 89) were detected by both LC-MS/MS and PESI-MS/MS, and regression analysis showed excellent agreement between the 2 methods (r 2 = 0.98). On IC, bromazepam and zolpidem were not detected in 2 and 1 cases, respectively.
Conclusions: PESI-MS/MS allows serum BZD detection and measurement. Given the isotope dilution approach, a calibration curve was not required, and its performance was similar to that of LC-MS/MS, and its specificity was higher than that of IC.
期刊介绍:
Therapeutic Drug Monitoring is a peer-reviewed, multidisciplinary journal directed to an audience of pharmacologists, clinical chemists, laboratorians, pharmacists, drug researchers and toxicologists. It fosters the exchange of knowledge among the various disciplines–clinical pharmacology, pathology, toxicology, analytical chemistry–that share a common interest in Therapeutic Drug Monitoring. The journal presents studies detailing the various factors that affect the rate and extent drugs are absorbed, metabolized, and excreted. Regular features include review articles on specific classes of drugs, original articles, case reports, technical notes, and continuing education articles.