{"title":"结合随机和非随机数据,预测竞争疗法的异质性效果。","authors":"Konstantina Chalkou, Tasnim Hamza, Pascal Benkert, Jens Kuhle, Chiara Zecca, Gabrielle Simoneau, Fabio Pellegrini, Andrea Manca, Matthias Egger, Georgia Salanti","doi":"10.1002/jrsm.1717","DOIUrl":null,"url":null,"abstract":"<p>Some patients benefit from a treatment while others may do so less or do not benefit at all. We have previously developed a two-stage network meta-regression prediction model that synthesized randomized trials and evaluates how treatment effects vary across patient characteristics. In this article, we extended this model to combine different sources of types in different formats: aggregate data (AD) and individual participant data (IPD) from randomized and non-randomized evidence. In the first stage, a prognostic model is developed to predict the baseline risk of the outcome using a large cohort study. In the second stage, we recalibrated this prognostic model to improve our predictions for patients enrolled in randomized trials. In the third stage, we used the baseline risk as effect modifier in a network meta-regression model combining AD, IPD randomized clinical trial to estimate heterogeneous treatment effects. We illustrated the approach in the re-analysis of a network of studies comparing three drugs for relapsing–remitting multiple sclerosis. Several patient characteristics influence the baseline risk of relapse, which in turn modifies the effect of the drugs. The proposed model makes personalized predictions for health outcomes under several treatment options and encompasses all relevant randomized and non-randomized evidence.</p>","PeriodicalId":226,"journal":{"name":"Research Synthesis Methods","volume":"15 4","pages":"641-656"},"PeriodicalIF":5.0000,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jrsm.1717","citationCount":"0","resultStr":"{\"title\":\"Combining randomized and non-randomized data to predict heterogeneous effects of competing treatments\",\"authors\":\"Konstantina Chalkou, Tasnim Hamza, Pascal Benkert, Jens Kuhle, Chiara Zecca, Gabrielle Simoneau, Fabio Pellegrini, Andrea Manca, Matthias Egger, Georgia Salanti\",\"doi\":\"10.1002/jrsm.1717\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Some patients benefit from a treatment while others may do so less or do not benefit at all. We have previously developed a two-stage network meta-regression prediction model that synthesized randomized trials and evaluates how treatment effects vary across patient characteristics. In this article, we extended this model to combine different sources of types in different formats: aggregate data (AD) and individual participant data (IPD) from randomized and non-randomized evidence. In the first stage, a prognostic model is developed to predict the baseline risk of the outcome using a large cohort study. In the second stage, we recalibrated this prognostic model to improve our predictions for patients enrolled in randomized trials. In the third stage, we used the baseline risk as effect modifier in a network meta-regression model combining AD, IPD randomized clinical trial to estimate heterogeneous treatment effects. We illustrated the approach in the re-analysis of a network of studies comparing three drugs for relapsing–remitting multiple sclerosis. Several patient characteristics influence the baseline risk of relapse, which in turn modifies the effect of the drugs. The proposed model makes personalized predictions for health outcomes under several treatment options and encompasses all relevant randomized and non-randomized evidence.</p>\",\"PeriodicalId\":226,\"journal\":{\"name\":\"Research Synthesis Methods\",\"volume\":\"15 4\",\"pages\":\"641-656\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jrsm.1717\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research Synthesis Methods\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jrsm.1717\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research Synthesis Methods","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jrsm.1717","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
Combining randomized and non-randomized data to predict heterogeneous effects of competing treatments
Some patients benefit from a treatment while others may do so less or do not benefit at all. We have previously developed a two-stage network meta-regression prediction model that synthesized randomized trials and evaluates how treatment effects vary across patient characteristics. In this article, we extended this model to combine different sources of types in different formats: aggregate data (AD) and individual participant data (IPD) from randomized and non-randomized evidence. In the first stage, a prognostic model is developed to predict the baseline risk of the outcome using a large cohort study. In the second stage, we recalibrated this prognostic model to improve our predictions for patients enrolled in randomized trials. In the third stage, we used the baseline risk as effect modifier in a network meta-regression model combining AD, IPD randomized clinical trial to estimate heterogeneous treatment effects. We illustrated the approach in the re-analysis of a network of studies comparing three drugs for relapsing–remitting multiple sclerosis. Several patient characteristics influence the baseline risk of relapse, which in turn modifies the effect of the drugs. The proposed model makes personalized predictions for health outcomes under several treatment options and encompasses all relevant randomized and non-randomized evidence.
期刊介绍:
Research Synthesis Methods is a reputable, peer-reviewed journal that focuses on the development and dissemination of methods for conducting systematic research synthesis. Our aim is to advance the knowledge and application of research synthesis methods across various disciplines.
Our journal provides a platform for the exchange of ideas and knowledge related to designing, conducting, analyzing, interpreting, reporting, and applying research synthesis. While research synthesis is commonly practiced in the health and social sciences, our journal also welcomes contributions from other fields to enrich the methodologies employed in research synthesis across scientific disciplines.
By bridging different disciplines, we aim to foster collaboration and cross-fertilization of ideas, ultimately enhancing the quality and effectiveness of research synthesis methods. Whether you are a researcher, practitioner, or stakeholder involved in research synthesis, our journal strives to offer valuable insights and practical guidance for your work.