具有退化扩散的伯格斯-费舍尔-KPP方程的解趋近于尖锐游波

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Tianyuan Xu, Shanming Ji, Ming Mei, Jingxue Yin
{"title":"具有退化扩散的伯格斯-费舍尔-KPP方程的解趋近于尖锐游波","authors":"Tianyuan Xu, Shanming Ji, Ming Mei, Jingxue Yin","doi":"10.1007/s00332-024-10021-x","DOIUrl":null,"url":null,"abstract":"<p>This paper is concerned with the convergence to sharp traveling waves of solutions with semi-compactly supported initial data for Burgers-Fisher-KPP equations with degenerate diffusion. We characterize the motion of the free boundary in the long-time asymptotic of the solution to Cauchy problem and the convergence to sharp traveling wave with almost exponential decay rates. Here a key difficulty lies in the intrinsic presence of nonlinear advection effect. After providing the analysis of the nonlinear advection effect on the asymptotic propagation speed of the free boundary, we construct sub- and super-solutions with semi-compact supports to estimate the motion of the free boundary. The new method overcomes the difficulties of the non-integrability of the generalized derivatives of sharp traveling waves at the free boundary.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Convergence to Sharp Traveling Waves of Solutions for Burgers-Fisher-KPP Equations with Degenerate Diffusion\",\"authors\":\"Tianyuan Xu, Shanming Ji, Ming Mei, Jingxue Yin\",\"doi\":\"10.1007/s00332-024-10021-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper is concerned with the convergence to sharp traveling waves of solutions with semi-compactly supported initial data for Burgers-Fisher-KPP equations with degenerate diffusion. We characterize the motion of the free boundary in the long-time asymptotic of the solution to Cauchy problem and the convergence to sharp traveling wave with almost exponential decay rates. Here a key difficulty lies in the intrinsic presence of nonlinear advection effect. After providing the analysis of the nonlinear advection effect on the asymptotic propagation speed of the free boundary, we construct sub- and super-solutions with semi-compact supports to estimate the motion of the free boundary. The new method overcomes the difficulties of the non-integrability of the generalized derivatives of sharp traveling waves at the free boundary.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00332-024-10021-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00332-024-10021-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

本文关注具有退化扩散的 Burgers-Fisher-KPP 方程的半紧密初始数据解向尖锐行波的收敛。我们描述了自由边界在 Cauchy 问题解的长期渐近中的运动特征,以及以几乎指数的衰减率收敛到尖锐行波的过程。这里的关键困难在于非线性平流效应的内在存在。在分析了非线性平流效应对自由边界渐近传播速度的影响后,我们构建了具有半紧密支撑的子分辨率和超分辨率来估计自由边界的运动。新方法克服了自由边界尖锐行波广义导数不可控的困难。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Convergence to Sharp Traveling Waves of Solutions for Burgers-Fisher-KPP Equations with Degenerate Diffusion

This paper is concerned with the convergence to sharp traveling waves of solutions with semi-compactly supported initial data for Burgers-Fisher-KPP equations with degenerate diffusion. We characterize the motion of the free boundary in the long-time asymptotic of the solution to Cauchy problem and the convergence to sharp traveling wave with almost exponential decay rates. Here a key difficulty lies in the intrinsic presence of nonlinear advection effect. After providing the analysis of the nonlinear advection effect on the asymptotic propagation speed of the free boundary, we construct sub- and super-solutions with semi-compact supports to estimate the motion of the free boundary. The new method overcomes the difficulties of the non-integrability of the generalized derivatives of sharp traveling waves at the free boundary.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信