{"title":"峰度测量:非对称分布不允许?","authors":"Andreas Eberl, Bernhard Klar","doi":"10.1007/s00184-024-00959-z","DOIUrl":null,"url":null,"abstract":"<p>Skewness and kurtosis are natural characteristics of a distribution. While it has long been recognized that they are more intrinsically entangled than other characteristics like location and dispersion, this has recently been made more explicit by Eberl and Klar (Stat Papers 65:415–433, 2024) with regard to orders of kurtosis. In this paper, we analyze the implications of this entanglement on kurtosis measures in general and for several specific examples. As a key finding, we show that kurtosis measures that are defined in the classical order-based way, which is analogous to measures of location, dispersion and skewness, do not exist. This raises serious doubts about the frequent application of such measures to skewed data. We then consider old and new proposals for kurtosis measures and evaluate under which additional conditions they measure kurtosis in a meaningful way. Some measures also allow more specific representations of the influence of skewness on the measurement of kurtosis than are available in a general setting. This works particularly well for a family of newly introduced density-based kurtosis measures.\n</p>","PeriodicalId":49821,"journal":{"name":"Metrika","volume":"2013 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Measures of kurtosis: inadmissible for asymmetric distributions?\",\"authors\":\"Andreas Eberl, Bernhard Klar\",\"doi\":\"10.1007/s00184-024-00959-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Skewness and kurtosis are natural characteristics of a distribution. While it has long been recognized that they are more intrinsically entangled than other characteristics like location and dispersion, this has recently been made more explicit by Eberl and Klar (Stat Papers 65:415–433, 2024) with regard to orders of kurtosis. In this paper, we analyze the implications of this entanglement on kurtosis measures in general and for several specific examples. As a key finding, we show that kurtosis measures that are defined in the classical order-based way, which is analogous to measures of location, dispersion and skewness, do not exist. This raises serious doubts about the frequent application of such measures to skewed data. We then consider old and new proposals for kurtosis measures and evaluate under which additional conditions they measure kurtosis in a meaningful way. Some measures also allow more specific representations of the influence of skewness on the measurement of kurtosis than are available in a general setting. This works particularly well for a family of newly introduced density-based kurtosis measures.\\n</p>\",\"PeriodicalId\":49821,\"journal\":{\"name\":\"Metrika\",\"volume\":\"2013 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metrika\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00184-024-00959-z\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metrika","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00184-024-00959-z","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Measures of kurtosis: inadmissible for asymmetric distributions?
Skewness and kurtosis are natural characteristics of a distribution. While it has long been recognized that they are more intrinsically entangled than other characteristics like location and dispersion, this has recently been made more explicit by Eberl and Klar (Stat Papers 65:415–433, 2024) with regard to orders of kurtosis. In this paper, we analyze the implications of this entanglement on kurtosis measures in general and for several specific examples. As a key finding, we show that kurtosis measures that are defined in the classical order-based way, which is analogous to measures of location, dispersion and skewness, do not exist. This raises serious doubts about the frequent application of such measures to skewed data. We then consider old and new proposals for kurtosis measures and evaluate under which additional conditions they measure kurtosis in a meaningful way. Some measures also allow more specific representations of the influence of skewness on the measurement of kurtosis than are available in a general setting. This works particularly well for a family of newly introduced density-based kurtosis measures.
期刊介绍:
Metrika is an international journal for theoretical and applied statistics. Metrika publishes original research papers in the field of mathematical statistics and statistical methods. Great importance is attached to new developments in theoretical statistics, statistical modeling and to actual innovative applicability of the proposed statistical methods and results. Topics of interest include, without being limited to, multivariate analysis, high dimensional statistics and nonparametric statistics; categorical data analysis and latent variable models; reliability, lifetime data analysis and statistics in engineering sciences.