{"title":"弱霍普夫布拉斯、粉碎乘积及其在邻接稳定布拉斯中的应用","authors":"Zhimin Liu, Shenglin Zhu","doi":"10.1142/s0219498825501567","DOIUrl":null,"url":null,"abstract":"<p>For a semisimple quasi-triangular Hopf algebra <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mo stretchy=\"false\">(</mo><mi>H</mi><mo>,</mo><mi>R</mi><mo stretchy=\"false\">)</mo></math></span><span></span> over a field <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mi>k</mi></math></span><span></span> of characteristic zero, and a strongly separable quantum commutative <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>H</mi></math></span><span></span>-module algebra <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mi>A</mi></math></span><span></span>, we show that <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mi>A</mi><mi>#</mi><mi>H</mi></math></span><span></span> is a weak Hopf algebra, and it can be embedded into a weak Hopf algebra <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><mo>End</mo><msup><mrow><mi>A</mi></mrow><mrow><mo stretchy=\"false\">∗</mo></mrow></msup><mo stretchy=\"false\">⊗</mo><mi>H</mi></math></span><span></span>. With these structures, <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow></mrow><mrow><mi>A</mi><mi>#</mi><mi>H</mi></mrow></msub><mo>Mod</mo></math></span><span></span> is the monoidal category introduced by Cohen and Westreich, and <span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow></mrow><mrow><mo>End</mo><msup><mrow><mi>A</mi></mrow><mrow><mo stretchy=\"false\">∗</mo></mrow></msup><mo stretchy=\"false\">⊗</mo><mi>H</mi></mrow></msub><mi mathvariant=\"cal\">ℳ</mi></math></span><span></span> is tensor equivalent to <span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow></mrow><mrow><mi>H</mi></mrow></msub><mi mathvariant=\"cal\">ℳ</mi></math></span><span></span>. If <span><math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"><mi>A</mi></math></span><span></span> is in the Müger center of <span><math altimg=\"eq-00011.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow></mrow><mrow><mi>H</mi></mrow></msub><mi mathvariant=\"cal\">ℳ</mi></math></span><span></span>, then the embedding is a quasi-triangular weak Hopf algebra morphism. This explains the presence of a subgroup inclusion in the characterization of irreducible Yetter–Drinfeld modules for a finite group algebra.</p>","PeriodicalId":54888,"journal":{"name":"Journal of Algebra and Its Applications","volume":"24 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Weak Hopf algebras, smash products and applications to adjoint-stable algebras\",\"authors\":\"Zhimin Liu, Shenglin Zhu\",\"doi\":\"10.1142/s0219498825501567\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>For a semisimple quasi-triangular Hopf algebra <span><math altimg=\\\"eq-00001.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mo stretchy=\\\"false\\\">(</mo><mi>H</mi><mo>,</mo><mi>R</mi><mo stretchy=\\\"false\\\">)</mo></math></span><span></span> over a field <span><math altimg=\\\"eq-00002.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>k</mi></math></span><span></span> of characteristic zero, and a strongly separable quantum commutative <span><math altimg=\\\"eq-00003.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>H</mi></math></span><span></span>-module algebra <span><math altimg=\\\"eq-00004.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>A</mi></math></span><span></span>, we show that <span><math altimg=\\\"eq-00005.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>A</mi><mi>#</mi><mi>H</mi></math></span><span></span> is a weak Hopf algebra, and it can be embedded into a weak Hopf algebra <span><math altimg=\\\"eq-00006.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mo>End</mo><msup><mrow><mi>A</mi></mrow><mrow><mo stretchy=\\\"false\\\">∗</mo></mrow></msup><mo stretchy=\\\"false\\\">⊗</mo><mi>H</mi></math></span><span></span>. With these structures, <span><math altimg=\\\"eq-00007.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow></mrow><mrow><mi>A</mi><mi>#</mi><mi>H</mi></mrow></msub><mo>Mod</mo></math></span><span></span> is the monoidal category introduced by Cohen and Westreich, and <span><math altimg=\\\"eq-00008.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow></mrow><mrow><mo>End</mo><msup><mrow><mi>A</mi></mrow><mrow><mo stretchy=\\\"false\\\">∗</mo></mrow></msup><mo stretchy=\\\"false\\\">⊗</mo><mi>H</mi></mrow></msub><mi mathvariant=\\\"cal\\\">ℳ</mi></math></span><span></span> is tensor equivalent to <span><math altimg=\\\"eq-00009.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow></mrow><mrow><mi>H</mi></mrow></msub><mi mathvariant=\\\"cal\\\">ℳ</mi></math></span><span></span>. If <span><math altimg=\\\"eq-00010.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>A</mi></math></span><span></span> is in the Müger center of <span><math altimg=\\\"eq-00011.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow></mrow><mrow><mi>H</mi></mrow></msub><mi mathvariant=\\\"cal\\\">ℳ</mi></math></span><span></span>, then the embedding is a quasi-triangular weak Hopf algebra morphism. This explains the presence of a subgroup inclusion in the characterization of irreducible Yetter–Drinfeld modules for a finite group algebra.</p>\",\"PeriodicalId\":54888,\"journal\":{\"name\":\"Journal of Algebra and Its Applications\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebra and Its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219498825501567\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra and Its Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0219498825501567","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
对于特征为零的域 k 上的半简单准三角形霍普夫代数(H,R)和强可分离量子交换 H 模块代数 A,我们证明 A#H 是弱霍普夫代数,并且它可以嵌入弱霍普夫代数 EndA∗⊗H 中。有了这些结构,A#HMod 就是科恩和韦斯特里希引入的单元范畴,而 EndA∗⊗Hℳ 与 Hℳ 是张量等价的。如果 A 位于 Hℳ 的 Müger 中心,那么嵌入就是准三角形弱霍普夫代数态射。这就解释了在有限群代数的不可还原Yetter-Drinfeld模块的表征中存在子群包含的原因。
Weak Hopf algebras, smash products and applications to adjoint-stable algebras
For a semisimple quasi-triangular Hopf algebra over a field of characteristic zero, and a strongly separable quantum commutative -module algebra , we show that is a weak Hopf algebra, and it can be embedded into a weak Hopf algebra . With these structures, is the monoidal category introduced by Cohen and Westreich, and is tensor equivalent to . If is in the Müger center of , then the embedding is a quasi-triangular weak Hopf algebra morphism. This explains the presence of a subgroup inclusion in the characterization of irreducible Yetter–Drinfeld modules for a finite group algebra.
期刊介绍:
The Journal of Algebra and Its Applications will publish papers both on theoretical and on applied aspects of Algebra. There is special interest in papers that point out innovative links between areas of Algebra and fields of application. As the field of Algebra continues to experience tremendous growth and diversification, we intend to provide the mathematical community with a central source for information on both the theoretical and the applied aspects of the discipline. While the journal will be primarily devoted to the publication of original research, extraordinary expository articles that encourage communication between algebraists and experts on areas of application as well as those presenting the state of the art on a given algebraic sub-discipline will be considered.