科斯坦特生成函数和姆凯-斯洛多耶对应关系

Pub Date : 2024-01-19 DOI:10.1142/s0219498825501713
Naihuan Jing, Zhijun Li, Danxia Wang
{"title":"科斯坦特生成函数和姆凯-斯洛多耶对应关系","authors":"Naihuan Jing, Zhijun Li, Danxia Wang","doi":"10.1142/s0219498825501713","DOIUrl":null,"url":null,"abstract":"<p>Let <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mi>N</mi><mo>⊴</mo><mi>G</mi></math></span><span></span> be a pair of finite subgroups of <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mstyle><mtext mathvariant=\"normal\">SL</mtext></mstyle></mrow><mrow><mn>2</mn></mrow></msub><mo stretchy=\"false\">(</mo><mi>ℂ</mi><mo stretchy=\"false\">)</mo></math></span><span></span> and <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>V</mi></math></span><span></span> a finite-dimensional fundamental <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mi>G</mi></math></span><span></span>-module. We study Kostant’s generating functions for the decomposition of the <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mstyle><mtext mathvariant=\"normal\">SL</mtext></mstyle></mrow><mrow><mn>2</mn></mrow></msub><mo stretchy=\"false\">(</mo><mi>ℂ</mi><mo stretchy=\"false\">)</mo></math></span><span></span>-module <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>S</mi></mrow><mrow><mi>k</mi></mrow></msup><mo stretchy=\"false\">(</mo><mi>V</mi><mo stretchy=\"false\">)</mo></math></span><span></span> restricted to <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><mi>N</mi><mo>◃</mo><mi>G</mi></math></span><span></span> in connection with the McKay–Slodowy correspondence. In particular, the classical Kostant formula was generalized to a uniform version of the Poincaré series for the symmetric invariants in which the multiplicities of any individual module in the symmetric algebra are completely determined.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Kostant’s generating functions and Mckay–Slodowy correspondence\",\"authors\":\"Naihuan Jing, Zhijun Li, Danxia Wang\",\"doi\":\"10.1142/s0219498825501713\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span><math altimg=\\\"eq-00001.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>N</mi><mo>⊴</mo><mi>G</mi></math></span><span></span> be a pair of finite subgroups of <span><math altimg=\\\"eq-00002.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mstyle><mtext mathvariant=\\\"normal\\\">SL</mtext></mstyle></mrow><mrow><mn>2</mn></mrow></msub><mo stretchy=\\\"false\\\">(</mo><mi>ℂ</mi><mo stretchy=\\\"false\\\">)</mo></math></span><span></span> and <span><math altimg=\\\"eq-00003.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>V</mi></math></span><span></span> a finite-dimensional fundamental <span><math altimg=\\\"eq-00004.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>G</mi></math></span><span></span>-module. We study Kostant’s generating functions for the decomposition of the <span><math altimg=\\\"eq-00005.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mstyle><mtext mathvariant=\\\"normal\\\">SL</mtext></mstyle></mrow><mrow><mn>2</mn></mrow></msub><mo stretchy=\\\"false\\\">(</mo><mi>ℂ</mi><mo stretchy=\\\"false\\\">)</mo></math></span><span></span>-module <span><math altimg=\\\"eq-00006.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msup><mrow><mi>S</mi></mrow><mrow><mi>k</mi></mrow></msup><mo stretchy=\\\"false\\\">(</mo><mi>V</mi><mo stretchy=\\\"false\\\">)</mo></math></span><span></span> restricted to <span><math altimg=\\\"eq-00007.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>N</mi><mo>◃</mo><mi>G</mi></math></span><span></span> in connection with the McKay–Slodowy correspondence. In particular, the classical Kostant formula was generalized to a uniform version of the Poincaré series for the symmetric invariants in which the multiplicities of any individual module in the symmetric algebra are completely determined.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-01-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219498825501713\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0219498825501713","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

设 N⊴G 是 SL2(ℂ) 的一对有限子群,V 是有限维基 G 模块。我们结合麦凯-斯洛多维对应关系,研究限制于 N◃G 的 SL2(ℂ)-Module Sk(V) 分解的科斯坦生成函数。特别是,经典的科斯坦公式被推广为对称不变式的统一版本的波恩卡列数列,其中对称代数中任何单个模块的乘数都是完全确定的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Kostant’s generating functions and Mckay–Slodowy correspondence

Let NG be a pair of finite subgroups of SL2() and V a finite-dimensional fundamental G-module. We study Kostant’s generating functions for the decomposition of the SL2()-module Sk(V) restricted to NG in connection with the McKay–Slodowy correspondence. In particular, the classical Kostant formula was generalized to a uniform version of the Poincaré series for the symmetric invariants in which the multiplicities of any individual module in the symmetric algebra are completely determined.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信