利用工具变量对生存数据的最佳治疗方案进行双稳健估计

IF 1.6 2区 数学 Q2 COMPUTER SCIENCE, THEORY & METHODS
Xia Junwen, Zhan Zishu, Zhang Jingxiao
{"title":"利用工具变量对生存数据的最佳治疗方案进行双稳健估计","authors":"Xia Junwen, Zhan Zishu, Zhang Jingxiao","doi":"10.1007/s11222-024-10407-7","DOIUrl":null,"url":null,"abstract":"<p>In survival contexts, substantial literature exists on estimating optimal treatment regimes, where treatments are assigned based on personal characteristics to maximize the survival probability. These methods assume that a set of covariates is sufficient to deconfound the treatment-outcome relationship. However, this assumption can be limited in observational studies or randomized trials in which non-adherence occurs. Therefore, we propose a novel approach to estimating optimal treatment regimes when certain confounders are unobservable and a binary instrumental variable is available. Specifically, via a binary instrumental variable, we propose a semiparametric estimator for optimal treatment regimes by maximizing a Kaplan–Meier-like estimator of the survival function. Furthermore, to increase resistance to model misspecification, we construct novel doubly robust estimators. Since the estimators of the survival function are jagged, we incorporate kernel smoothing methods to improve performance. Under appropriate regularity conditions, the asymptotic properties are rigorously established. Moreover, the finite sample performance is evaluated through simulation studies. Finally, we illustrate our method using data from the National Cancer Institute’s prostate, lung, colorectal, and ovarian cancer screening trial.</p>","PeriodicalId":22058,"journal":{"name":"Statistics and Computing","volume":"153 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Doubly robust estimation of optimal treatment regimes for survival data using an instrumental variable\",\"authors\":\"Xia Junwen, Zhan Zishu, Zhang Jingxiao\",\"doi\":\"10.1007/s11222-024-10407-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In survival contexts, substantial literature exists on estimating optimal treatment regimes, where treatments are assigned based on personal characteristics to maximize the survival probability. These methods assume that a set of covariates is sufficient to deconfound the treatment-outcome relationship. However, this assumption can be limited in observational studies or randomized trials in which non-adherence occurs. Therefore, we propose a novel approach to estimating optimal treatment regimes when certain confounders are unobservable and a binary instrumental variable is available. Specifically, via a binary instrumental variable, we propose a semiparametric estimator for optimal treatment regimes by maximizing a Kaplan–Meier-like estimator of the survival function. Furthermore, to increase resistance to model misspecification, we construct novel doubly robust estimators. Since the estimators of the survival function are jagged, we incorporate kernel smoothing methods to improve performance. Under appropriate regularity conditions, the asymptotic properties are rigorously established. Moreover, the finite sample performance is evaluated through simulation studies. Finally, we illustrate our method using data from the National Cancer Institute’s prostate, lung, colorectal, and ovarian cancer screening trial.</p>\",\"PeriodicalId\":22058,\"journal\":{\"name\":\"Statistics and Computing\",\"volume\":\"153 1\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistics and Computing\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11222-024-10407-7\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics and Computing","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11222-024-10407-7","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

在存活情况下,有大量文献对最佳治疗方案进行了估计,即根据个人特征分配治疗方案,以最大限度地提高存活概率。这些方法假设一组协变量足以解除治疗与结果之间的关系。然而,在观察性研究或随机试验中,这一假设可能会受到限制,因为在这些研究中会出现不坚持治疗的情况。因此,我们提出了一种新方法,在某些混杂因素不可观测且有二元工具变量的情况下,估算最佳治疗方案。具体来说,通过二元工具变量,我们提出了一种最佳治疗方案的半参数估计方法,即最大化生存函数的卡普兰-梅耶估计值。此外,为了提高对模型错误规范的抵抗力,我们构建了新颖的双重稳健估计器。由于生存函数的估计值是锯齿状的,我们采用了核平滑方法来提高性能。在适当的正则条件下,我们严格地建立了渐近特性。此外,我们还通过模拟研究评估了有限样本的性能。最后,我们使用美国国家癌症研究所的前列腺癌、肺癌、结肠直肠癌和卵巢癌筛查试验数据来说明我们的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Doubly robust estimation of optimal treatment regimes for survival data using an instrumental variable

Doubly robust estimation of optimal treatment regimes for survival data using an instrumental variable

In survival contexts, substantial literature exists on estimating optimal treatment regimes, where treatments are assigned based on personal characteristics to maximize the survival probability. These methods assume that a set of covariates is sufficient to deconfound the treatment-outcome relationship. However, this assumption can be limited in observational studies or randomized trials in which non-adherence occurs. Therefore, we propose a novel approach to estimating optimal treatment regimes when certain confounders are unobservable and a binary instrumental variable is available. Specifically, via a binary instrumental variable, we propose a semiparametric estimator for optimal treatment regimes by maximizing a Kaplan–Meier-like estimator of the survival function. Furthermore, to increase resistance to model misspecification, we construct novel doubly robust estimators. Since the estimators of the survival function are jagged, we incorporate kernel smoothing methods to improve performance. Under appropriate regularity conditions, the asymptotic properties are rigorously established. Moreover, the finite sample performance is evaluated through simulation studies. Finally, we illustrate our method using data from the National Cancer Institute’s prostate, lung, colorectal, and ovarian cancer screening trial.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Statistics and Computing
Statistics and Computing 数学-计算机:理论方法
CiteScore
3.20
自引率
4.50%
发文量
93
审稿时长
6-12 weeks
期刊介绍: Statistics and Computing is a bi-monthly refereed journal which publishes papers covering the range of the interface between the statistical and computing sciences. In particular, it addresses the use of statistical concepts in computing science, for example in machine learning, computer vision and data analytics, as well as the use of computers in data modelling, prediction and analysis. Specific topics which are covered include: techniques for evaluating analytically intractable problems such as bootstrap resampling, Markov chain Monte Carlo, sequential Monte Carlo, approximate Bayesian computation, search and optimization methods, stochastic simulation and Monte Carlo, graphics, computer environments, statistical approaches to software errors, information retrieval, machine learning, statistics of databases and database technology, huge data sets and big data analytics, computer algebra, graphical models, image processing, tomography, inverse problems and uncertainty quantification. In addition, the journal contains original research reports, authoritative review papers, discussed papers, and occasional special issues on particular topics or carrying proceedings of relevant conferences. Statistics and Computing also publishes book review and software review sections.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信