{"title":"具有凹凸和乔夸德非线性的基尔霍夫型混合局部和非局部椭圆问题","authors":"","doi":"10.1007/s11868-024-00593-3","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>In this paper, making use of non-smooth variational principle, we establish the existence of solution to the following Kirchhoff type mixed local and nonlocal elliptic problem with concave–convex and Choquard nonlinearities <span> <span>$$\\begin{aligned} \\left\\{ \\begin{array}{ll} \\mathcal {L}_{a,b}(u)=\\left( \\int \\limits _{\\Omega }\\frac{|u(y)|^{p}}{|x-y|^{\\mu }}dy\\right) |u(x)|^{p-2}u(x)+\\lambda |u(x)|^{q-2}u(x), &{}\\quad x\\in \\Omega ,\\\\ ~~~u(x)\\ge 0,~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~&{}\\quad x\\in \\Omega ,\\\\ ~u(x)=0,~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~&{}\\quad x\\in \\mathbb {R}^{N}\\setminus \\Omega , \\end{array} \\right. \\end{aligned}$$</span> </span>where <span> <span>\\(\\mathcal {L}_{a,b}(u)=-\\left( a+b \\Vert \\nabla u\\Vert ^{2(\\gamma -1)}_{L^{2}(\\Omega )}\\right) \\Delta u(x)+(-\\Delta )^s u(x)\\)</span> </span>, <span> <span>\\(\\gamma \\in \\left( 1,\\frac{N+4s+2}{N-2}\\right) \\)</span> </span>, <span> <span>\\(a>0\\)</span> </span>, <span> <span>\\(b>0\\)</span> </span> are constants, <span> <span>\\((-\\Delta )^{s}\\)</span> </span> is the restricted fractional Laplacian, <span> <span>\\(0<s<1\\)</span> </span>, <span> <span>\\(1<q<2<2p\\)</span> </span>, <span> <span>\\(0<\\mu <N\\)</span> </span>. The main contribution of this paper is giving a new supercritical range of <span> <span>\\(2p-1\\)</span> </span> and <span> <span>\\(\\gamma \\)</span> </span>. </p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Kirchhoff type mixed local and nonlocal elliptic problems with concave–convex and Choquard nonlinearities\",\"authors\":\"\",\"doi\":\"10.1007/s11868-024-00593-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>In this paper, making use of non-smooth variational principle, we establish the existence of solution to the following Kirchhoff type mixed local and nonlocal elliptic problem with concave–convex and Choquard nonlinearities <span> <span>$$\\\\begin{aligned} \\\\left\\\\{ \\\\begin{array}{ll} \\\\mathcal {L}_{a,b}(u)=\\\\left( \\\\int \\\\limits _{\\\\Omega }\\\\frac{|u(y)|^{p}}{|x-y|^{\\\\mu }}dy\\\\right) |u(x)|^{p-2}u(x)+\\\\lambda |u(x)|^{q-2}u(x), &{}\\\\quad x\\\\in \\\\Omega ,\\\\\\\\ ~~~u(x)\\\\ge 0,~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~&{}\\\\quad x\\\\in \\\\Omega ,\\\\\\\\ ~u(x)=0,~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~&{}\\\\quad x\\\\in \\\\mathbb {R}^{N}\\\\setminus \\\\Omega , \\\\end{array} \\\\right. \\\\end{aligned}$$</span> </span>where <span> <span>\\\\(\\\\mathcal {L}_{a,b}(u)=-\\\\left( a+b \\\\Vert \\\\nabla u\\\\Vert ^{2(\\\\gamma -1)}_{L^{2}(\\\\Omega )}\\\\right) \\\\Delta u(x)+(-\\\\Delta )^s u(x)\\\\)</span> </span>, <span> <span>\\\\(\\\\gamma \\\\in \\\\left( 1,\\\\frac{N+4s+2}{N-2}\\\\right) \\\\)</span> </span>, <span> <span>\\\\(a>0\\\\)</span> </span>, <span> <span>\\\\(b>0\\\\)</span> </span> are constants, <span> <span>\\\\((-\\\\Delta )^{s}\\\\)</span> </span> is the restricted fractional Laplacian, <span> <span>\\\\(0<s<1\\\\)</span> </span>, <span> <span>\\\\(1<q<2<2p\\\\)</span> </span>, <span> <span>\\\\(0<\\\\mu <N\\\\)</span> </span>. The main contribution of this paper is giving a new supercritical range of <span> <span>\\\\(2p-1\\\\)</span> </span> and <span> <span>\\\\(\\\\gamma \\\\)</span> </span>. </p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11868-024-00593-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11868-024-00593-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Kirchhoff type mixed local and nonlocal elliptic problems with concave–convex and Choquard nonlinearities
Abstract
In this paper, making use of non-smooth variational principle, we establish the existence of solution to the following Kirchhoff type mixed local and nonlocal elliptic problem with concave–convex and Choquard nonlinearities $$\begin{aligned} \left\{ \begin{array}{ll} \mathcal {L}_{a,b}(u)=\left( \int \limits _{\Omega }\frac{|u(y)|^{p}}{|x-y|^{\mu }}dy\right) |u(x)|^{p-2}u(x)+\lambda |u(x)|^{q-2}u(x), &{}\quad x\in \Omega ,\\ ~~~u(x)\ge 0,~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~&{}\quad x\in \Omega ,\\ ~u(x)=0,~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~&{}\quad x\in \mathbb {R}^{N}\setminus \Omega , \end{array} \right. \end{aligned}$$where \(\mathcal {L}_{a,b}(u)=-\left( a+b \Vert \nabla u\Vert ^{2(\gamma -1)}_{L^{2}(\Omega )}\right) \Delta u(x)+(-\Delta )^s u(x)\), \(\gamma \in \left( 1,\frac{N+4s+2}{N-2}\right) \), \(a>0\), \(b>0\) are constants, \((-\Delta )^{s}\) is the restricted fractional Laplacian, \(0<s<1\), \(1<q<2<2p\), \(0<\mu <N\). The main contribution of this paper is giving a new supercritical range of \(2p-1\) and \(\gamma \).