{"title":"具有凹凸和乔夸德非线性的基尔霍夫型混合局部和非局部椭圆问题","authors":"","doi":"10.1007/s11868-024-00593-3","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>In this paper, making use of non-smooth variational principle, we establish the existence of solution to the following Kirchhoff type mixed local and nonlocal elliptic problem with concave–convex and Choquard nonlinearities <span> <span>$$\\begin{aligned} \\left\\{ \\begin{array}{ll} \\mathcal {L}_{a,b}(u)=\\left( \\int \\limits _{\\Omega }\\frac{|u(y)|^{p}}{|x-y|^{\\mu }}dy\\right) |u(x)|^{p-2}u(x)+\\lambda |u(x)|^{q-2}u(x), &{}\\quad x\\in \\Omega ,\\\\ ~~~u(x)\\ge 0,~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~&{}\\quad x\\in \\Omega ,\\\\ ~u(x)=0,~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~&{}\\quad x\\in \\mathbb {R}^{N}\\setminus \\Omega , \\end{array} \\right. \\end{aligned}$$</span> </span>where <span> <span>\\(\\mathcal {L}_{a,b}(u)=-\\left( a+b \\Vert \\nabla u\\Vert ^{2(\\gamma -1)}_{L^{2}(\\Omega )}\\right) \\Delta u(x)+(-\\Delta )^s u(x)\\)</span> </span>, <span> <span>\\(\\gamma \\in \\left( 1,\\frac{N+4s+2}{N-2}\\right) \\)</span> </span>, <span> <span>\\(a>0\\)</span> </span>, <span> <span>\\(b>0\\)</span> </span> are constants, <span> <span>\\((-\\Delta )^{s}\\)</span> </span> is the restricted fractional Laplacian, <span> <span>\\(0<s<1\\)</span> </span>, <span> <span>\\(1<q<2<2p\\)</span> </span>, <span> <span>\\(0<\\mu <N\\)</span> </span>. The main contribution of this paper is giving a new supercritical range of <span> <span>\\(2p-1\\)</span> </span> and <span> <span>\\(\\gamma \\)</span> </span>. </p>","PeriodicalId":48793,"journal":{"name":"Journal of Pseudo-Differential Operators and Applications","volume":"133 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Kirchhoff type mixed local and nonlocal elliptic problems with concave–convex and Choquard nonlinearities\",\"authors\":\"\",\"doi\":\"10.1007/s11868-024-00593-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>In this paper, making use of non-smooth variational principle, we establish the existence of solution to the following Kirchhoff type mixed local and nonlocal elliptic problem with concave–convex and Choquard nonlinearities <span> <span>$$\\\\begin{aligned} \\\\left\\\\{ \\\\begin{array}{ll} \\\\mathcal {L}_{a,b}(u)=\\\\left( \\\\int \\\\limits _{\\\\Omega }\\\\frac{|u(y)|^{p}}{|x-y|^{\\\\mu }}dy\\\\right) |u(x)|^{p-2}u(x)+\\\\lambda |u(x)|^{q-2}u(x), &{}\\\\quad x\\\\in \\\\Omega ,\\\\\\\\ ~~~u(x)\\\\ge 0,~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~&{}\\\\quad x\\\\in \\\\Omega ,\\\\\\\\ ~u(x)=0,~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~&{}\\\\quad x\\\\in \\\\mathbb {R}^{N}\\\\setminus \\\\Omega , \\\\end{array} \\\\right. \\\\end{aligned}$$</span> </span>where <span> <span>\\\\(\\\\mathcal {L}_{a,b}(u)=-\\\\left( a+b \\\\Vert \\\\nabla u\\\\Vert ^{2(\\\\gamma -1)}_{L^{2}(\\\\Omega )}\\\\right) \\\\Delta u(x)+(-\\\\Delta )^s u(x)\\\\)</span> </span>, <span> <span>\\\\(\\\\gamma \\\\in \\\\left( 1,\\\\frac{N+4s+2}{N-2}\\\\right) \\\\)</span> </span>, <span> <span>\\\\(a>0\\\\)</span> </span>, <span> <span>\\\\(b>0\\\\)</span> </span> are constants, <span> <span>\\\\((-\\\\Delta )^{s}\\\\)</span> </span> is the restricted fractional Laplacian, <span> <span>\\\\(0<s<1\\\\)</span> </span>, <span> <span>\\\\(1<q<2<2p\\\\)</span> </span>, <span> <span>\\\\(0<\\\\mu <N\\\\)</span> </span>. The main contribution of this paper is giving a new supercritical range of <span> <span>\\\\(2p-1\\\\)</span> </span> and <span> <span>\\\\(\\\\gamma \\\\)</span> </span>. </p>\",\"PeriodicalId\":48793,\"journal\":{\"name\":\"Journal of Pseudo-Differential Operators and Applications\",\"volume\":\"133 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pseudo-Differential Operators and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11868-024-00593-3\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pseudo-Differential Operators and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11868-024-00593-3","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Kirchhoff type mixed local and nonlocal elliptic problems with concave–convex and Choquard nonlinearities
Abstract
In this paper, making use of non-smooth variational principle, we establish the existence of solution to the following Kirchhoff type mixed local and nonlocal elliptic problem with concave–convex and Choquard nonlinearities $$\begin{aligned} \left\{ \begin{array}{ll} \mathcal {L}_{a,b}(u)=\left( \int \limits _{\Omega }\frac{|u(y)|^{p}}{|x-y|^{\mu }}dy\right) |u(x)|^{p-2}u(x)+\lambda |u(x)|^{q-2}u(x), &{}\quad x\in \Omega ,\\ ~~~u(x)\ge 0,~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~&{}\quad x\in \Omega ,\\ ~u(x)=0,~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~&{}\quad x\in \mathbb {R}^{N}\setminus \Omega , \end{array} \right. \end{aligned}$$where \(\mathcal {L}_{a,b}(u)=-\left( a+b \Vert \nabla u\Vert ^{2(\gamma -1)}_{L^{2}(\Omega )}\right) \Delta u(x)+(-\Delta )^s u(x)\), \(\gamma \in \left( 1,\frac{N+4s+2}{N-2}\right) \), \(a>0\), \(b>0\) are constants, \((-\Delta )^{s}\) is the restricted fractional Laplacian, \(0<s<1\), \(1<q<2<2p\), \(0<\mu <N\). The main contribution of this paper is giving a new supercritical range of \(2p-1\) and \(\gamma \).
期刊介绍:
The Journal of Pseudo-Differential Operators and Applications is a forum for high quality papers in the mathematics, applications and numerical analysis of pseudo-differential operators. Pseudo-differential operators are understood in a very broad sense embracing but not limited to harmonic analysis, functional analysis, operator theory and algebras, partial differential equations, geometry, mathematical physics and novel applications in engineering, geophysics and medical sciences.