具有凹凸和乔夸德非线性的基尔霍夫型混合局部和非局部椭圆问题

Pub Date : 2024-03-15 DOI:10.1007/s11868-024-00593-3
{"title":"具有凹凸和乔夸德非线性的基尔霍夫型混合局部和非局部椭圆问题","authors":"","doi":"10.1007/s11868-024-00593-3","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>In this paper, making use of non-smooth variational principle, we establish the existence of solution to the following Kirchhoff type mixed local and nonlocal elliptic problem with concave–convex and Choquard nonlinearities <span> <span>$$\\begin{aligned} \\left\\{ \\begin{array}{ll} \\mathcal {L}_{a,b}(u)=\\left( \\int \\limits _{\\Omega }\\frac{|u(y)|^{p}}{|x-y|^{\\mu }}dy\\right) |u(x)|^{p-2}u(x)+\\lambda |u(x)|^{q-2}u(x), &amp;{}\\quad x\\in \\Omega ,\\\\ ~~~u(x)\\ge 0,~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~&amp;{}\\quad x\\in \\Omega ,\\\\ ~u(x)=0,~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~&amp;{}\\quad x\\in \\mathbb {R}^{N}\\setminus \\Omega , \\end{array} \\right. \\end{aligned}$$</span> </span>where <span> <span>\\(\\mathcal {L}_{a,b}(u)=-\\left( a+b \\Vert \\nabla u\\Vert ^{2(\\gamma -1)}_{L^{2}(\\Omega )}\\right) \\Delta u(x)+(-\\Delta )^s u(x)\\)</span> </span>, <span> <span>\\(\\gamma \\in \\left( 1,\\frac{N+4s+2}{N-2}\\right) \\)</span> </span>, <span> <span>\\(a&gt;0\\)</span> </span>, <span> <span>\\(b&gt;0\\)</span> </span> are constants, <span> <span>\\((-\\Delta )^{s}\\)</span> </span> is the restricted fractional Laplacian, <span> <span>\\(0&lt;s&lt;1\\)</span> </span>, <span> <span>\\(1&lt;q&lt;2&lt;2p\\)</span> </span>, <span> <span>\\(0&lt;\\mu &lt;N\\)</span> </span>. The main contribution of this paper is giving a new supercritical range of <span> <span>\\(2p-1\\)</span> </span> and <span> <span>\\(\\gamma \\)</span> </span>. </p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Kirchhoff type mixed local and nonlocal elliptic problems with concave–convex and Choquard nonlinearities\",\"authors\":\"\",\"doi\":\"10.1007/s11868-024-00593-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>In this paper, making use of non-smooth variational principle, we establish the existence of solution to the following Kirchhoff type mixed local and nonlocal elliptic problem with concave–convex and Choquard nonlinearities <span> <span>$$\\\\begin{aligned} \\\\left\\\\{ \\\\begin{array}{ll} \\\\mathcal {L}_{a,b}(u)=\\\\left( \\\\int \\\\limits _{\\\\Omega }\\\\frac{|u(y)|^{p}}{|x-y|^{\\\\mu }}dy\\\\right) |u(x)|^{p-2}u(x)+\\\\lambda |u(x)|^{q-2}u(x), &amp;{}\\\\quad x\\\\in \\\\Omega ,\\\\\\\\ ~~~u(x)\\\\ge 0,~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~&amp;{}\\\\quad x\\\\in \\\\Omega ,\\\\\\\\ ~u(x)=0,~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~&amp;{}\\\\quad x\\\\in \\\\mathbb {R}^{N}\\\\setminus \\\\Omega , \\\\end{array} \\\\right. \\\\end{aligned}$$</span> </span>where <span> <span>\\\\(\\\\mathcal {L}_{a,b}(u)=-\\\\left( a+b \\\\Vert \\\\nabla u\\\\Vert ^{2(\\\\gamma -1)}_{L^{2}(\\\\Omega )}\\\\right) \\\\Delta u(x)+(-\\\\Delta )^s u(x)\\\\)</span> </span>, <span> <span>\\\\(\\\\gamma \\\\in \\\\left( 1,\\\\frac{N+4s+2}{N-2}\\\\right) \\\\)</span> </span>, <span> <span>\\\\(a&gt;0\\\\)</span> </span>, <span> <span>\\\\(b&gt;0\\\\)</span> </span> are constants, <span> <span>\\\\((-\\\\Delta )^{s}\\\\)</span> </span> is the restricted fractional Laplacian, <span> <span>\\\\(0&lt;s&lt;1\\\\)</span> </span>, <span> <span>\\\\(1&lt;q&lt;2&lt;2p\\\\)</span> </span>, <span> <span>\\\\(0&lt;\\\\mu &lt;N\\\\)</span> </span>. The main contribution of this paper is giving a new supercritical range of <span> <span>\\\\(2p-1\\\\)</span> </span> and <span> <span>\\\\(\\\\gamma \\\\)</span> </span>. </p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11868-024-00593-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11868-024-00593-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要 本文利用非光滑变分原理,建立了以下具有凹凸和乔夸德非线性的基尔霍夫型局部和非局部混合椭圆问题的存在解 $$\begin{aligned}\left\{ \begin{array}{ll}\mathcal {L}_{a,b}(u)=left( \int \limits _{\Omega }\frac{|u(y)|^{p}}{|x-y|^{\mu }}dy\right) |u(x)|^{p-2}u(x)+\lambda |u(x)|^{q-2}u(x), &;{}\quad x\in \Omega ,\ ~~~u(x)\ge 0,~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~&;{}\quad x\in \Omega ,\ ~~u(x)=0,~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~&{}\quad x\in \mathbb {R}^{N}\setminus \Omega , \end{array}.\right.\end{aligned}$$ 其中 (mathcal {L}_{a,b}(u)=-\left( a+b \Vert \nabla u\Vert ^{2(\gamma -1)}_{L^{2}(\Omega )}\right) \Delta u(x)+(-\Delta )^s u(x)\),\(\gamma \in \left( 1,\frac{N+4s+2}{N-2}\right) \), (a>0\), (b>0\)都是常量, ((-\Delta )^{s}\)是受限分数拉普拉奇, (0<s<1\), (1<q<2<2p\), (0<\mu<N\)。本文的主要贡献是给出了 \(2p-1\) 和 \(\gamma\) 的一个新的超临界范围。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Kirchhoff type mixed local and nonlocal elliptic problems with concave–convex and Choquard nonlinearities

Abstract

In this paper, making use of non-smooth variational principle, we establish the existence of solution to the following Kirchhoff type mixed local and nonlocal elliptic problem with concave–convex and Choquard nonlinearities $$\begin{aligned} \left\{ \begin{array}{ll} \mathcal {L}_{a,b}(u)=\left( \int \limits _{\Omega }\frac{|u(y)|^{p}}{|x-y|^{\mu }}dy\right) |u(x)|^{p-2}u(x)+\lambda |u(x)|^{q-2}u(x), &{}\quad x\in \Omega ,\\ ~~~u(x)\ge 0,~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~&{}\quad x\in \Omega ,\\ ~u(x)=0,~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~&{}\quad x\in \mathbb {R}^{N}\setminus \Omega , \end{array} \right. \end{aligned}$$ where \(\mathcal {L}_{a,b}(u)=-\left( a+b \Vert \nabla u\Vert ^{2(\gamma -1)}_{L^{2}(\Omega )}\right) \Delta u(x)+(-\Delta )^s u(x)\) , \(\gamma \in \left( 1,\frac{N+4s+2}{N-2}\right) \) , \(a>0\) , \(b>0\) are constants, \((-\Delta )^{s}\) is the restricted fractional Laplacian, \(0<s<1\) , \(1<q<2<2p\) , \(0<\mu <N\) . The main contribution of this paper is giving a new supercritical range of \(2p-1\) and \(\gamma \) .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信