连续时间量子马尔可夫半群的热力学形式:详细平衡条件、熵、压力和平衡量子过程

IF 1.3 4区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Jader E. Brasil, Josué Knorst, Artur O. Lopes
{"title":"连续时间量子马尔可夫半群的热力学形式:详细平衡条件、熵、压力和平衡量子过程","authors":"Jader E. Brasil, Josué Knorst, Artur O. Lopes","doi":"10.1142/s123016122350018x","DOIUrl":null,"url":null,"abstract":"<p>Let <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>ℂ</mi><mo stretchy=\"false\">)</mo></math></span><span></span> denote the set of <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mi>n</mi></math></span><span></span> by <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>n</mi></math></span><span></span> complex matrices. Consider continuous time quantum semigroups <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi mathvariant=\"cal\">𝒫</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><msup><mrow><mi>e</mi></mrow><mrow><mi>t</mi><mspace width=\".17em\"></mspace><mi mathvariant=\"cal\">ℒ</mi></mrow></msup></math></span><span></span>, <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mi>t</mi><mo>≥</mo><mn>0</mn></math></span><span></span>, where <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><mi mathvariant=\"cal\">ℒ</mi><mo>:</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>ℂ</mi><mo stretchy=\"false\">)</mo><mo>→</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>ℂ</mi><mo stretchy=\"false\">)</mo></math></span><span></span> is the infinitesimal generator. If we assume that <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><mi mathvariant=\"cal\">ℒ</mi><mo stretchy=\"false\">(</mo><mi>I</mi><mo stretchy=\"false\">)</mo><mo>=</mo><mn>0</mn></math></span><span></span>, we will call <span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>e</mi></mrow><mrow><mi>t</mi><mspace width=\".17em\"></mspace><mi mathvariant=\"cal\">ℒ</mi></mrow></msup></math></span><span></span>, <span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><mi>t</mi><mo>≥</mo><mn>0</mn></math></span><span></span> a quantum Markov semigroup. Given a stationary density matrix <span><math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"><mi>ρ</mi><mo>=</mo><msub><mrow><mi>ρ</mi></mrow><mrow><mi mathvariant=\"cal\">ℒ</mi></mrow></msub></math></span><span></span>, for the quantum Markov semigroup <span><math altimg=\"eq-00011.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi mathvariant=\"cal\">𝒫</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span><span></span>, <span><math altimg=\"eq-00012.gif\" display=\"inline\" overflow=\"scroll\"><mi>t</mi><mo>≥</mo><mn>0</mn></math></span><span></span>, we can define a continuous time stationary quantum Markov process, denoted by <span><math altimg=\"eq-00013.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>X</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span><span></span>, <span><math altimg=\"eq-00014.gif\" display=\"inline\" overflow=\"scroll\"><mi>t</mi><mo>≥</mo><mn>0</mn><mo>.</mo></math></span><span></span> Given an <i>a priori</i> Laplacian operator <span><math altimg=\"eq-00015.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi mathvariant=\"cal\">ℒ</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>:</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>ℂ</mi><mo stretchy=\"false\">)</mo><mo>→</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>ℂ</mi><mo stretchy=\"false\">)</mo></math></span><span></span>, we will present a natural concept of entropy for a class of density matrices on <span><math altimg=\"eq-00016.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>ℂ</mi><mo stretchy=\"false\">)</mo></math></span><span></span>. Given a Hermitian operator <span><math altimg=\"eq-00017.gif\" display=\"inline\" overflow=\"scroll\"><mi>A</mi><mo>:</mo><msup><mrow><mi>ℂ</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>→</mo><msup><mrow><mi>ℂ</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span><span></span> (which plays the role of a Hamiltonian), we will study a version of the variational principle of pressure for <span><math altimg=\"eq-00018.gif\" display=\"inline\" overflow=\"scroll\"><mi>A</mi></math></span><span></span>. A density matrix <span><math altimg=\"eq-00019.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>ρ</mi></mrow><mrow><mi>A</mi></mrow></msub></math></span><span></span> maximizing pressure will be called an equilibrium density matrix. From <span><math altimg=\"eq-00020.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>ρ</mi></mrow><mrow><mi>A</mi></mrow></msub></math></span><span></span> we will derive a new infinitesimal generator <span><math altimg=\"eq-00021.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi mathvariant=\"cal\">ℒ</mi></mrow><mrow><mi>A</mi></mrow></msub></math></span><span></span>. Finally, the continuous time quantum Markov process defined by the semigroup <span><math altimg=\"eq-00022.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi mathvariant=\"cal\">𝒫</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><msup><mrow><mi>e</mi></mrow><mrow><mi>t</mi><mspace width=\".17em\"></mspace><msub><mrow><mi mathvariant=\"cal\">ℒ</mi></mrow><mrow><mi>A</mi></mrow></msub></mrow></msup></math></span><span></span>, <span><math altimg=\"eq-00023.gif\" display=\"inline\" overflow=\"scroll\"><mi>t</mi><mo>≥</mo><mn>0</mn></math></span><span></span>, and an initial stationary density matrix, will be called the continuous time equilibrium quantum Markov process for the Hamiltonian <span><math altimg=\"eq-00024.gif\" display=\"inline\" overflow=\"scroll\"><mi>A</mi></math></span><span></span>. It corresponds to the quantum thermodynamical equilibrium for the action of the Hamiltonian <span><math altimg=\"eq-00025.gif\" display=\"inline\" overflow=\"scroll\"><mi>A</mi></math></span><span></span>.</p>","PeriodicalId":54681,"journal":{"name":"Open Systems & Information Dynamics","volume":"153 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermodynamic Formalism for Continuous-Time Quantum Markov Semigroups: the Detailed Balance Condition, Entropy, Pressure and Equilibrium Quantum Processes\",\"authors\":\"Jader E. Brasil, Josué Knorst, Artur O. Lopes\",\"doi\":\"10.1142/s123016122350018x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span><math altimg=\\\"eq-00001.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\\\"false\\\">(</mo><mi>ℂ</mi><mo stretchy=\\\"false\\\">)</mo></math></span><span></span> denote the set of <span><math altimg=\\\"eq-00002.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>n</mi></math></span><span></span> by <span><math altimg=\\\"eq-00003.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>n</mi></math></span><span></span> complex matrices. Consider continuous time quantum semigroups <span><math altimg=\\\"eq-00004.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi mathvariant=\\\"cal\\\">𝒫</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><msup><mrow><mi>e</mi></mrow><mrow><mi>t</mi><mspace width=\\\".17em\\\"></mspace><mi mathvariant=\\\"cal\\\">ℒ</mi></mrow></msup></math></span><span></span>, <span><math altimg=\\\"eq-00005.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>t</mi><mo>≥</mo><mn>0</mn></math></span><span></span>, where <span><math altimg=\\\"eq-00006.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi mathvariant=\\\"cal\\\">ℒ</mi><mo>:</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\\\"false\\\">(</mo><mi>ℂ</mi><mo stretchy=\\\"false\\\">)</mo><mo>→</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\\\"false\\\">(</mo><mi>ℂ</mi><mo stretchy=\\\"false\\\">)</mo></math></span><span></span> is the infinitesimal generator. If we assume that <span><math altimg=\\\"eq-00007.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi mathvariant=\\\"cal\\\">ℒ</mi><mo stretchy=\\\"false\\\">(</mo><mi>I</mi><mo stretchy=\\\"false\\\">)</mo><mo>=</mo><mn>0</mn></math></span><span></span>, we will call <span><math altimg=\\\"eq-00008.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msup><mrow><mi>e</mi></mrow><mrow><mi>t</mi><mspace width=\\\".17em\\\"></mspace><mi mathvariant=\\\"cal\\\">ℒ</mi></mrow></msup></math></span><span></span>, <span><math altimg=\\\"eq-00009.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>t</mi><mo>≥</mo><mn>0</mn></math></span><span></span> a quantum Markov semigroup. Given a stationary density matrix <span><math altimg=\\\"eq-00010.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>ρ</mi><mo>=</mo><msub><mrow><mi>ρ</mi></mrow><mrow><mi mathvariant=\\\"cal\\\">ℒ</mi></mrow></msub></math></span><span></span>, for the quantum Markov semigroup <span><math altimg=\\\"eq-00011.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi mathvariant=\\\"cal\\\">𝒫</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span><span></span>, <span><math altimg=\\\"eq-00012.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>t</mi><mo>≥</mo><mn>0</mn></math></span><span></span>, we can define a continuous time stationary quantum Markov process, denoted by <span><math altimg=\\\"eq-00013.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi>X</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span><span></span>, <span><math altimg=\\\"eq-00014.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>t</mi><mo>≥</mo><mn>0</mn><mo>.</mo></math></span><span></span> Given an <i>a priori</i> Laplacian operator <span><math altimg=\\\"eq-00015.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi mathvariant=\\\"cal\\\">ℒ</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>:</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\\\"false\\\">(</mo><mi>ℂ</mi><mo stretchy=\\\"false\\\">)</mo><mo>→</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\\\"false\\\">(</mo><mi>ℂ</mi><mo stretchy=\\\"false\\\">)</mo></math></span><span></span>, we will present a natural concept of entropy for a class of density matrices on <span><math altimg=\\\"eq-00016.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\\\"false\\\">(</mo><mi>ℂ</mi><mo stretchy=\\\"false\\\">)</mo></math></span><span></span>. Given a Hermitian operator <span><math altimg=\\\"eq-00017.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>A</mi><mo>:</mo><msup><mrow><mi>ℂ</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>→</mo><msup><mrow><mi>ℂ</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span><span></span> (which plays the role of a Hamiltonian), we will study a version of the variational principle of pressure for <span><math altimg=\\\"eq-00018.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>A</mi></math></span><span></span>. A density matrix <span><math altimg=\\\"eq-00019.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi>ρ</mi></mrow><mrow><mi>A</mi></mrow></msub></math></span><span></span> maximizing pressure will be called an equilibrium density matrix. From <span><math altimg=\\\"eq-00020.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi>ρ</mi></mrow><mrow><mi>A</mi></mrow></msub></math></span><span></span> we will derive a new infinitesimal generator <span><math altimg=\\\"eq-00021.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi mathvariant=\\\"cal\\\">ℒ</mi></mrow><mrow><mi>A</mi></mrow></msub></math></span><span></span>. Finally, the continuous time quantum Markov process defined by the semigroup <span><math altimg=\\\"eq-00022.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi mathvariant=\\\"cal\\\">𝒫</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><msup><mrow><mi>e</mi></mrow><mrow><mi>t</mi><mspace width=\\\".17em\\\"></mspace><msub><mrow><mi mathvariant=\\\"cal\\\">ℒ</mi></mrow><mrow><mi>A</mi></mrow></msub></mrow></msup></math></span><span></span>, <span><math altimg=\\\"eq-00023.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>t</mi><mo>≥</mo><mn>0</mn></math></span><span></span>, and an initial stationary density matrix, will be called the continuous time equilibrium quantum Markov process for the Hamiltonian <span><math altimg=\\\"eq-00024.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>A</mi></math></span><span></span>. It corresponds to the quantum thermodynamical equilibrium for the action of the Hamiltonian <span><math altimg=\\\"eq-00025.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>A</mi></math></span><span></span>.</p>\",\"PeriodicalId\":54681,\"journal\":{\"name\":\"Open Systems & Information Dynamics\",\"volume\":\"153 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open Systems & Information Dynamics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1142/s123016122350018x\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Systems & Information Dynamics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/s123016122350018x","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

让 Mn(ℂ) 表示 n×n 复矩阵的集合。考虑连续时间量子半群𝒫t=etℒ, t≥0,其中ℒ:Mn(ℂ)→Mn(ℂ)是无穷小发生器。如果假设ℒ(I)=0,我们就称 etℒ, t≥0 为量子马尔可夫半群。给定一个静态密度矩阵 ρ=ρℒ,对于量子马尔可夫半群 𝒫t,t≥0,我们可以定义一个连续时间静态量子马尔可夫过程,用 Xt 表示,t≥0。给定一个先验拉普拉斯算子 ℒ0:Mn(ℂ)→Mn(ℂ),我们将提出 Mn(ℂ) 上一类密度矩阵的熵的自然概念。给定一个赫尔墨斯算子 A:ℂn→ℂn(它起着哈密顿的作用),我们将研究 A 的压力变分原理的一个版本。我们将从ρA 推导出一个新的无穷小生成器ℒA。最后,由半群𝒫t=etℒA, t≥0 和初始静态密度矩阵定义的连续时间量子马尔可夫过程将被称为哈密顿 A 的连续时间平衡量子马尔可夫过程,它对应于哈密顿 A 作用的量子热力学平衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Thermodynamic Formalism for Continuous-Time Quantum Markov Semigroups: the Detailed Balance Condition, Entropy, Pressure and Equilibrium Quantum Processes

Let Mn() denote the set of n by n complex matrices. Consider continuous time quantum semigroups 𝒫t=et, t0, where :Mn()Mn() is the infinitesimal generator. If we assume that (I)=0, we will call et, t0 a quantum Markov semigroup. Given a stationary density matrix ρ=ρ, for the quantum Markov semigroup 𝒫t, t0, we can define a continuous time stationary quantum Markov process, denoted by Xt, t0. Given an a priori Laplacian operator 0:Mn()Mn(), we will present a natural concept of entropy for a class of density matrices on Mn(). Given a Hermitian operator A:nn (which plays the role of a Hamiltonian), we will study a version of the variational principle of pressure for A. A density matrix ρA maximizing pressure will be called an equilibrium density matrix. From ρA we will derive a new infinitesimal generator A. Finally, the continuous time quantum Markov process defined by the semigroup 𝒫t=etA, t0, and an initial stationary density matrix, will be called the continuous time equilibrium quantum Markov process for the Hamiltonian A. It corresponds to the quantum thermodynamical equilibrium for the action of the Hamiltonian A.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Open Systems & Information Dynamics
Open Systems & Information Dynamics 工程技术-计算机:信息系统
CiteScore
1.40
自引率
12.50%
发文量
4
审稿时长
>12 weeks
期刊介绍: The aim of the Journal is to promote interdisciplinary research in mathematics, physics, engineering and life sciences centered around the issues of broadly understood information processing, storage and transmission, in both quantum and classical settings. Our special interest lies in the information-theoretic approach to phenomena dealing with dynamics and thermodynamics, control, communication, filtering, memory and cooperative behaviour, etc., in open complex systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信