{"title":"连续时间量子马尔可夫半群的热力学形式:详细平衡条件、熵、压力和平衡量子过程","authors":"Jader E. Brasil, Josué Knorst, Artur O. Lopes","doi":"10.1142/s123016122350018x","DOIUrl":null,"url":null,"abstract":"<p>Let <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>ℂ</mi><mo stretchy=\"false\">)</mo></math></span><span></span> denote the set of <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mi>n</mi></math></span><span></span> by <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>n</mi></math></span><span></span> complex matrices. Consider continuous time quantum semigroups <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi mathvariant=\"cal\">𝒫</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><msup><mrow><mi>e</mi></mrow><mrow><mi>t</mi><mspace width=\".17em\"></mspace><mi mathvariant=\"cal\">ℒ</mi></mrow></msup></math></span><span></span>, <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mi>t</mi><mo>≥</mo><mn>0</mn></math></span><span></span>, where <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><mi mathvariant=\"cal\">ℒ</mi><mo>:</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>ℂ</mi><mo stretchy=\"false\">)</mo><mo>→</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>ℂ</mi><mo stretchy=\"false\">)</mo></math></span><span></span> is the infinitesimal generator. If we assume that <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><mi mathvariant=\"cal\">ℒ</mi><mo stretchy=\"false\">(</mo><mi>I</mi><mo stretchy=\"false\">)</mo><mo>=</mo><mn>0</mn></math></span><span></span>, we will call <span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>e</mi></mrow><mrow><mi>t</mi><mspace width=\".17em\"></mspace><mi mathvariant=\"cal\">ℒ</mi></mrow></msup></math></span><span></span>, <span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><mi>t</mi><mo>≥</mo><mn>0</mn></math></span><span></span> a quantum Markov semigroup. Given a stationary density matrix <span><math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"><mi>ρ</mi><mo>=</mo><msub><mrow><mi>ρ</mi></mrow><mrow><mi mathvariant=\"cal\">ℒ</mi></mrow></msub></math></span><span></span>, for the quantum Markov semigroup <span><math altimg=\"eq-00011.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi mathvariant=\"cal\">𝒫</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span><span></span>, <span><math altimg=\"eq-00012.gif\" display=\"inline\" overflow=\"scroll\"><mi>t</mi><mo>≥</mo><mn>0</mn></math></span><span></span>, we can define a continuous time stationary quantum Markov process, denoted by <span><math altimg=\"eq-00013.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>X</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span><span></span>, <span><math altimg=\"eq-00014.gif\" display=\"inline\" overflow=\"scroll\"><mi>t</mi><mo>≥</mo><mn>0</mn><mo>.</mo></math></span><span></span> Given an <i>a priori</i> Laplacian operator <span><math altimg=\"eq-00015.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi mathvariant=\"cal\">ℒ</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>:</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>ℂ</mi><mo stretchy=\"false\">)</mo><mo>→</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>ℂ</mi><mo stretchy=\"false\">)</mo></math></span><span></span>, we will present a natural concept of entropy for a class of density matrices on <span><math altimg=\"eq-00016.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>ℂ</mi><mo stretchy=\"false\">)</mo></math></span><span></span>. Given a Hermitian operator <span><math altimg=\"eq-00017.gif\" display=\"inline\" overflow=\"scroll\"><mi>A</mi><mo>:</mo><msup><mrow><mi>ℂ</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>→</mo><msup><mrow><mi>ℂ</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span><span></span> (which plays the role of a Hamiltonian), we will study a version of the variational principle of pressure for <span><math altimg=\"eq-00018.gif\" display=\"inline\" overflow=\"scroll\"><mi>A</mi></math></span><span></span>. A density matrix <span><math altimg=\"eq-00019.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>ρ</mi></mrow><mrow><mi>A</mi></mrow></msub></math></span><span></span> maximizing pressure will be called an equilibrium density matrix. From <span><math altimg=\"eq-00020.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>ρ</mi></mrow><mrow><mi>A</mi></mrow></msub></math></span><span></span> we will derive a new infinitesimal generator <span><math altimg=\"eq-00021.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi mathvariant=\"cal\">ℒ</mi></mrow><mrow><mi>A</mi></mrow></msub></math></span><span></span>. Finally, the continuous time quantum Markov process defined by the semigroup <span><math altimg=\"eq-00022.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi mathvariant=\"cal\">𝒫</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><msup><mrow><mi>e</mi></mrow><mrow><mi>t</mi><mspace width=\".17em\"></mspace><msub><mrow><mi mathvariant=\"cal\">ℒ</mi></mrow><mrow><mi>A</mi></mrow></msub></mrow></msup></math></span><span></span>, <span><math altimg=\"eq-00023.gif\" display=\"inline\" overflow=\"scroll\"><mi>t</mi><mo>≥</mo><mn>0</mn></math></span><span></span>, and an initial stationary density matrix, will be called the continuous time equilibrium quantum Markov process for the Hamiltonian <span><math altimg=\"eq-00024.gif\" display=\"inline\" overflow=\"scroll\"><mi>A</mi></math></span><span></span>. It corresponds to the quantum thermodynamical equilibrium for the action of the Hamiltonian <span><math altimg=\"eq-00025.gif\" display=\"inline\" overflow=\"scroll\"><mi>A</mi></math></span><span></span>.</p>","PeriodicalId":54681,"journal":{"name":"Open Systems & Information Dynamics","volume":"153 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermodynamic Formalism for Continuous-Time Quantum Markov Semigroups: the Detailed Balance Condition, Entropy, Pressure and Equilibrium Quantum Processes\",\"authors\":\"Jader E. Brasil, Josué Knorst, Artur O. Lopes\",\"doi\":\"10.1142/s123016122350018x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span><math altimg=\\\"eq-00001.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\\\"false\\\">(</mo><mi>ℂ</mi><mo stretchy=\\\"false\\\">)</mo></math></span><span></span> denote the set of <span><math altimg=\\\"eq-00002.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>n</mi></math></span><span></span> by <span><math altimg=\\\"eq-00003.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>n</mi></math></span><span></span> complex matrices. Consider continuous time quantum semigroups <span><math altimg=\\\"eq-00004.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi mathvariant=\\\"cal\\\">𝒫</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><msup><mrow><mi>e</mi></mrow><mrow><mi>t</mi><mspace width=\\\".17em\\\"></mspace><mi mathvariant=\\\"cal\\\">ℒ</mi></mrow></msup></math></span><span></span>, <span><math altimg=\\\"eq-00005.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>t</mi><mo>≥</mo><mn>0</mn></math></span><span></span>, where <span><math altimg=\\\"eq-00006.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi mathvariant=\\\"cal\\\">ℒ</mi><mo>:</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\\\"false\\\">(</mo><mi>ℂ</mi><mo stretchy=\\\"false\\\">)</mo><mo>→</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\\\"false\\\">(</mo><mi>ℂ</mi><mo stretchy=\\\"false\\\">)</mo></math></span><span></span> is the infinitesimal generator. If we assume that <span><math altimg=\\\"eq-00007.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi mathvariant=\\\"cal\\\">ℒ</mi><mo stretchy=\\\"false\\\">(</mo><mi>I</mi><mo stretchy=\\\"false\\\">)</mo><mo>=</mo><mn>0</mn></math></span><span></span>, we will call <span><math altimg=\\\"eq-00008.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msup><mrow><mi>e</mi></mrow><mrow><mi>t</mi><mspace width=\\\".17em\\\"></mspace><mi mathvariant=\\\"cal\\\">ℒ</mi></mrow></msup></math></span><span></span>, <span><math altimg=\\\"eq-00009.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>t</mi><mo>≥</mo><mn>0</mn></math></span><span></span> a quantum Markov semigroup. Given a stationary density matrix <span><math altimg=\\\"eq-00010.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>ρ</mi><mo>=</mo><msub><mrow><mi>ρ</mi></mrow><mrow><mi mathvariant=\\\"cal\\\">ℒ</mi></mrow></msub></math></span><span></span>, for the quantum Markov semigroup <span><math altimg=\\\"eq-00011.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi mathvariant=\\\"cal\\\">𝒫</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span><span></span>, <span><math altimg=\\\"eq-00012.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>t</mi><mo>≥</mo><mn>0</mn></math></span><span></span>, we can define a continuous time stationary quantum Markov process, denoted by <span><math altimg=\\\"eq-00013.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi>X</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span><span></span>, <span><math altimg=\\\"eq-00014.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>t</mi><mo>≥</mo><mn>0</mn><mo>.</mo></math></span><span></span> Given an <i>a priori</i> Laplacian operator <span><math altimg=\\\"eq-00015.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi mathvariant=\\\"cal\\\">ℒ</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>:</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\\\"false\\\">(</mo><mi>ℂ</mi><mo stretchy=\\\"false\\\">)</mo><mo>→</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\\\"false\\\">(</mo><mi>ℂ</mi><mo stretchy=\\\"false\\\">)</mo></math></span><span></span>, we will present a natural concept of entropy for a class of density matrices on <span><math altimg=\\\"eq-00016.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\\\"false\\\">(</mo><mi>ℂ</mi><mo stretchy=\\\"false\\\">)</mo></math></span><span></span>. Given a Hermitian operator <span><math altimg=\\\"eq-00017.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>A</mi><mo>:</mo><msup><mrow><mi>ℂ</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>→</mo><msup><mrow><mi>ℂ</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span><span></span> (which plays the role of a Hamiltonian), we will study a version of the variational principle of pressure for <span><math altimg=\\\"eq-00018.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>A</mi></math></span><span></span>. A density matrix <span><math altimg=\\\"eq-00019.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi>ρ</mi></mrow><mrow><mi>A</mi></mrow></msub></math></span><span></span> maximizing pressure will be called an equilibrium density matrix. From <span><math altimg=\\\"eq-00020.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi>ρ</mi></mrow><mrow><mi>A</mi></mrow></msub></math></span><span></span> we will derive a new infinitesimal generator <span><math altimg=\\\"eq-00021.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi mathvariant=\\\"cal\\\">ℒ</mi></mrow><mrow><mi>A</mi></mrow></msub></math></span><span></span>. Finally, the continuous time quantum Markov process defined by the semigroup <span><math altimg=\\\"eq-00022.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi mathvariant=\\\"cal\\\">𝒫</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><msup><mrow><mi>e</mi></mrow><mrow><mi>t</mi><mspace width=\\\".17em\\\"></mspace><msub><mrow><mi mathvariant=\\\"cal\\\">ℒ</mi></mrow><mrow><mi>A</mi></mrow></msub></mrow></msup></math></span><span></span>, <span><math altimg=\\\"eq-00023.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>t</mi><mo>≥</mo><mn>0</mn></math></span><span></span>, and an initial stationary density matrix, will be called the continuous time equilibrium quantum Markov process for the Hamiltonian <span><math altimg=\\\"eq-00024.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>A</mi></math></span><span></span>. It corresponds to the quantum thermodynamical equilibrium for the action of the Hamiltonian <span><math altimg=\\\"eq-00025.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>A</mi></math></span><span></span>.</p>\",\"PeriodicalId\":54681,\"journal\":{\"name\":\"Open Systems & Information Dynamics\",\"volume\":\"153 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open Systems & Information Dynamics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1142/s123016122350018x\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Systems & Information Dynamics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/s123016122350018x","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0
摘要
让 Mn(ℂ) 表示 n×n 复矩阵的集合。考虑连续时间量子半群𝒫t=etℒ, t≥0,其中ℒ:Mn(ℂ)→Mn(ℂ)是无穷小发生器。如果假设ℒ(I)=0,我们就称 etℒ, t≥0 为量子马尔可夫半群。给定一个静态密度矩阵 ρ=ρℒ,对于量子马尔可夫半群 𝒫t,t≥0,我们可以定义一个连续时间静态量子马尔可夫过程,用 Xt 表示,t≥0。给定一个先验拉普拉斯算子 ℒ0:Mn(ℂ)→Mn(ℂ),我们将提出 Mn(ℂ) 上一类密度矩阵的熵的自然概念。给定一个赫尔墨斯算子 A:ℂn→ℂn(它起着哈密顿的作用),我们将研究 A 的压力变分原理的一个版本。我们将从ρA 推导出一个新的无穷小生成器ℒA。最后,由半群𝒫t=etℒA, t≥0 和初始静态密度矩阵定义的连续时间量子马尔可夫过程将被称为哈密顿 A 的连续时间平衡量子马尔可夫过程,它对应于哈密顿 A 作用的量子热力学平衡。
Thermodynamic Formalism for Continuous-Time Quantum Markov Semigroups: the Detailed Balance Condition, Entropy, Pressure and Equilibrium Quantum Processes
Let denote the set of by complex matrices. Consider continuous time quantum semigroups , , where is the infinitesimal generator. If we assume that , we will call , a quantum Markov semigroup. Given a stationary density matrix , for the quantum Markov semigroup , , we can define a continuous time stationary quantum Markov process, denoted by , Given an a priori Laplacian operator , we will present a natural concept of entropy for a class of density matrices on . Given a Hermitian operator (which plays the role of a Hamiltonian), we will study a version of the variational principle of pressure for . A density matrix maximizing pressure will be called an equilibrium density matrix. From we will derive a new infinitesimal generator . Finally, the continuous time quantum Markov process defined by the semigroup , , and an initial stationary density matrix, will be called the continuous time equilibrium quantum Markov process for the Hamiltonian . It corresponds to the quantum thermodynamical equilibrium for the action of the Hamiltonian .
期刊介绍:
The aim of the Journal is to promote interdisciplinary research in mathematics, physics, engineering and life sciences centered around the issues of broadly understood information processing, storage and transmission, in both quantum and classical settings. Our special interest lies in the information-theoretic approach to phenomena dealing with dynamics and thermodynamics, control, communication, filtering, memory and cooperative behaviour, etc., in open complex systems.