双博子模开放量子体系中的几何与熵高斯相关性

IF 1.3 4区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Alina Stoica, Aurelian Isar
{"title":"双博子模开放量子体系中的几何与熵高斯相关性","authors":"Alina Stoica, Aurelian Isar","doi":"10.1142/s1230161223500208","DOIUrl":null,"url":null,"abstract":"<p>Different types of geometric and entropic quantum correlation quantifiers are studied for a system composed of two resonant bosonic modes embedded in a thermal bath. The description of the evolution of the correlation measures is formulated in the framework of the theory of open systems, based on completely positive quantum dynamical semigroups, by using both a geometric and entropic quantification of total nonclassical correlations of Gaussian states. We consider the special case when the initial squeezed thermal state of the system preserves its form in time. We show that time evolution of the measures strongly depends on the parameters characterising the initial state of the system (squeezing parameter and average thermal photon numbers of the two modes) and of the thermal environment (temperature of the thermal bath and dissipation rate). In the limit of large times all the considered measures asymptotically tend to zero value, corresponding to an asymptotic bimodal uncorrelated product state. We make a comparison between the behaviour of the evolution in time of the Gaussian geometric quantum correlations and Gaussian entropic quantum correlations.</p>","PeriodicalId":54681,"journal":{"name":"Open Systems & Information Dynamics","volume":"32 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Geometric versus Entropic Gaussian Correlations in an Open Quantum System of Two Bosonic Modes\",\"authors\":\"Alina Stoica, Aurelian Isar\",\"doi\":\"10.1142/s1230161223500208\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Different types of geometric and entropic quantum correlation quantifiers are studied for a system composed of two resonant bosonic modes embedded in a thermal bath. The description of the evolution of the correlation measures is formulated in the framework of the theory of open systems, based on completely positive quantum dynamical semigroups, by using both a geometric and entropic quantification of total nonclassical correlations of Gaussian states. We consider the special case when the initial squeezed thermal state of the system preserves its form in time. We show that time evolution of the measures strongly depends on the parameters characterising the initial state of the system (squeezing parameter and average thermal photon numbers of the two modes) and of the thermal environment (temperature of the thermal bath and dissipation rate). In the limit of large times all the considered measures asymptotically tend to zero value, corresponding to an asymptotic bimodal uncorrelated product state. We make a comparison between the behaviour of the evolution in time of the Gaussian geometric quantum correlations and Gaussian entropic quantum correlations.</p>\",\"PeriodicalId\":54681,\"journal\":{\"name\":\"Open Systems & Information Dynamics\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open Systems & Information Dynamics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1142/s1230161223500208\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Systems & Information Dynamics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/s1230161223500208","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

针对嵌入热浴中的两个共振玻色模式组成的系统,研究了不同类型的几何和熵量子相关量子。在开放系统理论的框架内,基于完全正量子动力学半群,通过使用高斯态总非经典相关性的几何和熵量子化,对相关度的演化进行了描述。我们考虑了系统的初始挤压热状态在时间上保持其形式的特殊情况。我们的研究表明,度量的时间演化强烈依赖于表征系统初始状态的参数(挤压参数和两种模式的平均热光子数)和热环境参数(热浴温度和耗散率)。在大时间极限,所有考虑的测量值都渐近趋向于零值,对应于一个渐近的双模不相关乘积状态。我们对高斯几何量子相关性和高斯熵量子相关性在时间上的演化行为进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Geometric versus Entropic Gaussian Correlations in an Open Quantum System of Two Bosonic Modes

Different types of geometric and entropic quantum correlation quantifiers are studied for a system composed of two resonant bosonic modes embedded in a thermal bath. The description of the evolution of the correlation measures is formulated in the framework of the theory of open systems, based on completely positive quantum dynamical semigroups, by using both a geometric and entropic quantification of total nonclassical correlations of Gaussian states. We consider the special case when the initial squeezed thermal state of the system preserves its form in time. We show that time evolution of the measures strongly depends on the parameters characterising the initial state of the system (squeezing parameter and average thermal photon numbers of the two modes) and of the thermal environment (temperature of the thermal bath and dissipation rate). In the limit of large times all the considered measures asymptotically tend to zero value, corresponding to an asymptotic bimodal uncorrelated product state. We make a comparison between the behaviour of the evolution in time of the Gaussian geometric quantum correlations and Gaussian entropic quantum correlations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Open Systems & Information Dynamics
Open Systems & Information Dynamics 工程技术-计算机:信息系统
CiteScore
1.40
自引率
12.50%
发文量
4
审稿时长
>12 weeks
期刊介绍: The aim of the Journal is to promote interdisciplinary research in mathematics, physics, engineering and life sciences centered around the issues of broadly understood information processing, storage and transmission, in both quantum and classical settings. Our special interest lies in the information-theoretic approach to phenomena dealing with dynamics and thermodynamics, control, communication, filtering, memory and cooperative behaviour, etc., in open complex systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信