轴 U(1) 不可逆对称的晶格实现

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Yamato Honda, Okuto Morikawa, Soma Onoda, Hiroshi Suzuki
{"title":"轴 U(1) 不可逆对称的晶格实现","authors":"Yamato Honda, Okuto Morikawa, Soma Onoda, Hiroshi Suzuki","doi":"10.1093/ptep/ptae040","DOIUrl":null,"url":null,"abstract":"In U(1) lattice gauge theory with compact U(1) variables, we construct the symmetry operator, i.e., the topological defect, for the axial U(1) non-invertible symmetry. This requires a lattice formulation of chiral gauge theory with an anomalous matter content and we employ the lattice formulation on the basis of the Ginsparg–Wilson relation. The invariance of the symmetry operator under the gauge transformation of the gauge field on the defect is realized, imitating the prescription by Karasik in continuum theory, by integrating the lattice Chern–Simons term on the defect over smooth lattice gauge transformations. The projection operator for allowed magnetic fluxes on the defect then emerges with lattice regularization. The resulting symmetry operator is manifestly invariant under lattice gauge transformations. In an appendix, we give another way of constructing the symmetry operator on the basis of a 3D $\\mathbb {Z}_N$ TQFT, the level-N BF theory on the lattice.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lattice realization of the axial U(1) non-invertible symmetry\",\"authors\":\"Yamato Honda, Okuto Morikawa, Soma Onoda, Hiroshi Suzuki\",\"doi\":\"10.1093/ptep/ptae040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In U(1) lattice gauge theory with compact U(1) variables, we construct the symmetry operator, i.e., the topological defect, for the axial U(1) non-invertible symmetry. This requires a lattice formulation of chiral gauge theory with an anomalous matter content and we employ the lattice formulation on the basis of the Ginsparg–Wilson relation. The invariance of the symmetry operator under the gauge transformation of the gauge field on the defect is realized, imitating the prescription by Karasik in continuum theory, by integrating the lattice Chern–Simons term on the defect over smooth lattice gauge transformations. The projection operator for allowed magnetic fluxes on the defect then emerges with lattice regularization. The resulting symmetry operator is manifestly invariant under lattice gauge transformations. In an appendix, we give another way of constructing the symmetry operator on the basis of a 3D $\\\\mathbb {Z}_N$ TQFT, the level-N BF theory on the lattice.\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1093/ptep/ptae040\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1093/ptep/ptae040","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

在具有紧凑U(1) 变量的U(1) 格规理论中,我们为轴U(1) 不可逆对称构造了对称算子,即拓扑缺陷。这需要一种具有反常物质含量的手性规规理论晶格公式,我们在金斯帕-威尔逊关系的基础上采用了晶格公式。仿照卡拉希克在连续理论中的处方,通过对缺陷上的晶格切尔-西蒙斯项进行平滑晶格量规变换积分,实现了对称算子在缺陷上量规场的量规变换下的不变性。这样,缺陷上允许磁通量的投影算子就通过晶格正则化出现了。由此得到的对称算子在晶格轨距变换下是明显不变的。在附录中,我们给出了在三维 $\mathbb {Z}_N$ TQFT(晶格上的 N 层 BF 理论)基础上构造对称算子的另一种方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lattice realization of the axial U(1) non-invertible symmetry
In U(1) lattice gauge theory with compact U(1) variables, we construct the symmetry operator, i.e., the topological defect, for the axial U(1) non-invertible symmetry. This requires a lattice formulation of chiral gauge theory with an anomalous matter content and we employ the lattice formulation on the basis of the Ginsparg–Wilson relation. The invariance of the symmetry operator under the gauge transformation of the gauge field on the defect is realized, imitating the prescription by Karasik in continuum theory, by integrating the lattice Chern–Simons term on the defect over smooth lattice gauge transformations. The projection operator for allowed magnetic fluxes on the defect then emerges with lattice regularization. The resulting symmetry operator is manifestly invariant under lattice gauge transformations. In an appendix, we give another way of constructing the symmetry operator on the basis of a 3D $\mathbb {Z}_N$ TQFT, the level-N BF theory on the lattice.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信