{"title":"轴 U(1) 不可逆对称的晶格实现","authors":"Yamato Honda, Okuto Morikawa, Soma Onoda, Hiroshi Suzuki","doi":"10.1093/ptep/ptae040","DOIUrl":null,"url":null,"abstract":"In U(1) lattice gauge theory with compact U(1) variables, we construct the symmetry operator, i.e., the topological defect, for the axial U(1) non-invertible symmetry. This requires a lattice formulation of chiral gauge theory with an anomalous matter content and we employ the lattice formulation on the basis of the Ginsparg–Wilson relation. The invariance of the symmetry operator under the gauge transformation of the gauge field on the defect is realized, imitating the prescription by Karasik in continuum theory, by integrating the lattice Chern–Simons term on the defect over smooth lattice gauge transformations. The projection operator for allowed magnetic fluxes on the defect then emerges with lattice regularization. The resulting symmetry operator is manifestly invariant under lattice gauge transformations. In an appendix, we give another way of constructing the symmetry operator on the basis of a 3D $\\mathbb {Z}_N$ TQFT, the level-N BF theory on the lattice.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lattice realization of the axial U(1) non-invertible symmetry\",\"authors\":\"Yamato Honda, Okuto Morikawa, Soma Onoda, Hiroshi Suzuki\",\"doi\":\"10.1093/ptep/ptae040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In U(1) lattice gauge theory with compact U(1) variables, we construct the symmetry operator, i.e., the topological defect, for the axial U(1) non-invertible symmetry. This requires a lattice formulation of chiral gauge theory with an anomalous matter content and we employ the lattice formulation on the basis of the Ginsparg–Wilson relation. The invariance of the symmetry operator under the gauge transformation of the gauge field on the defect is realized, imitating the prescription by Karasik in continuum theory, by integrating the lattice Chern–Simons term on the defect over smooth lattice gauge transformations. The projection operator for allowed magnetic fluxes on the defect then emerges with lattice regularization. The resulting symmetry operator is manifestly invariant under lattice gauge transformations. In an appendix, we give another way of constructing the symmetry operator on the basis of a 3D $\\\\mathbb {Z}_N$ TQFT, the level-N BF theory on the lattice.\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1093/ptep/ptae040\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1093/ptep/ptae040","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Lattice realization of the axial U(1) non-invertible symmetry
In U(1) lattice gauge theory with compact U(1) variables, we construct the symmetry operator, i.e., the topological defect, for the axial U(1) non-invertible symmetry. This requires a lattice formulation of chiral gauge theory with an anomalous matter content and we employ the lattice formulation on the basis of the Ginsparg–Wilson relation. The invariance of the symmetry operator under the gauge transformation of the gauge field on the defect is realized, imitating the prescription by Karasik in continuum theory, by integrating the lattice Chern–Simons term on the defect over smooth lattice gauge transformations. The projection operator for allowed magnetic fluxes on the defect then emerges with lattice regularization. The resulting symmetry operator is manifestly invariant under lattice gauge transformations. In an appendix, we give another way of constructing the symmetry operator on the basis of a 3D $\mathbb {Z}_N$ TQFT, the level-N BF theory on the lattice.