与植物物种相比,植物区系生态位在构建与羌雍冰川亚冰川带高山草本植物相关的真菌群落中更为重要

IF 2.1 3区 生物学 Q3 MICROBIOLOGY
Wangchen Sonam, Yongqin Liu
{"title":"与植物物种相比,植物区系生态位在构建与羌雍冰川亚冰川带高山草本植物相关的真菌群落中更为重要","authors":"Wangchen Sonam, Yongqin Liu","doi":"10.1007/s13199-024-00973-9","DOIUrl":null,"url":null,"abstract":"<p>The plant compartment niche (i.e., the host plant provides various microhabitats for the microbial community, such as the rhizosphere, root endosphere, leaf endosphere, and phylloplane) and plant species play a significant role in shaping the plant-associated microbial community assembly. However, in the mycobiome associated with alpine herbs in the subnival belt research, little work has been done to assess the contribution of plant compartment niches and plant species to fungal community variation and to reveal the plant compartment niche differentiation of fungal communities. In this study, we quantified the fungal communities associated with the rhizosphere soil, root endospheres, and leaf endospheres of three alpine herbs (<i>Rheum spiciforme</i>, <i>Eriophyton wallichii</i>, and <i>Rhodiola bupleuroides</i>) in the subnival belt of the Qiangyong glacier using high-throughput DNA sequencing. Our results revealed that the variation in diversity and composition of the fungal community was predominantly shaped by plant compartment niche rather than plant species. Rhizosphere soil exhibited the highest level of fungal diversity and niche breadth, while the lowest level was observed in the leaf endosphere. The fungal community composition significantly differed across different plant compartment niches. Fungal co-occurrence networks of the root endosphere and leaf endosphere were more complex and showed higher centrality and connectedness than the rhizosphere soil. Moreover, we also found that the deterministic process governed the fungal community assembly, and the host plant exerts stronger selection pressure on the leaf endophytes in comparison with the root endophytes. The root endophytes are the primary potential contributors to the leaf endophytes, compared with the fungal community associated with rhizosphere soil. Further, the <i>Pleosporaceae</i>, <i>Davidiellaceae,</i> and <i>Chaetomiaceae</i> were significantly enriched and overlapped in two plant compartment niches (root endosphere and leaf endosphere). Collectively, this study reveals that the variation in the diversity and composition of fungal communities associated with three alpine herbs were primarily affected by plant compartment niches rather than plant species. Additionally, this study also reveals that the diversity, composition, co-occurrence pattern, and assembly process of fungal communities associated with three alpine herbs exhibited plant compartment niche differentiation. These results provide a novel insight into the community assembly and ecological interactions of fungal communities associated with plants in harsh environments.</p>","PeriodicalId":22123,"journal":{"name":"Symbiosis","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Plant compartment niche is more important in structuring the fungal community associated with alpine herbs in the subnival belt of the Qiangyong glacier than plant species\",\"authors\":\"Wangchen Sonam, Yongqin Liu\",\"doi\":\"10.1007/s13199-024-00973-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The plant compartment niche (i.e., the host plant provides various microhabitats for the microbial community, such as the rhizosphere, root endosphere, leaf endosphere, and phylloplane) and plant species play a significant role in shaping the plant-associated microbial community assembly. However, in the mycobiome associated with alpine herbs in the subnival belt research, little work has been done to assess the contribution of plant compartment niches and plant species to fungal community variation and to reveal the plant compartment niche differentiation of fungal communities. In this study, we quantified the fungal communities associated with the rhizosphere soil, root endospheres, and leaf endospheres of three alpine herbs (<i>Rheum spiciforme</i>, <i>Eriophyton wallichii</i>, and <i>Rhodiola bupleuroides</i>) in the subnival belt of the Qiangyong glacier using high-throughput DNA sequencing. Our results revealed that the variation in diversity and composition of the fungal community was predominantly shaped by plant compartment niche rather than plant species. Rhizosphere soil exhibited the highest level of fungal diversity and niche breadth, while the lowest level was observed in the leaf endosphere. The fungal community composition significantly differed across different plant compartment niches. Fungal co-occurrence networks of the root endosphere and leaf endosphere were more complex and showed higher centrality and connectedness than the rhizosphere soil. Moreover, we also found that the deterministic process governed the fungal community assembly, and the host plant exerts stronger selection pressure on the leaf endophytes in comparison with the root endophytes. The root endophytes are the primary potential contributors to the leaf endophytes, compared with the fungal community associated with rhizosphere soil. Further, the <i>Pleosporaceae</i>, <i>Davidiellaceae,</i> and <i>Chaetomiaceae</i> were significantly enriched and overlapped in two plant compartment niches (root endosphere and leaf endosphere). Collectively, this study reveals that the variation in the diversity and composition of fungal communities associated with three alpine herbs were primarily affected by plant compartment niches rather than plant species. Additionally, this study also reveals that the diversity, composition, co-occurrence pattern, and assembly process of fungal communities associated with three alpine herbs exhibited plant compartment niche differentiation. These results provide a novel insight into the community assembly and ecological interactions of fungal communities associated with plants in harsh environments.</p>\",\"PeriodicalId\":22123,\"journal\":{\"name\":\"Symbiosis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Symbiosis\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s13199-024-00973-9\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symbiosis","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s13199-024-00973-9","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

植物区系生态位(即寄主植物为微生物群落提供的各种微生境,如根圈、根内圈、叶内圈和叶面)和植物物种在塑造植物相关微生物群落组合方面发挥着重要作用。然而,在亚荒漠带研究中与高山草本植物相关的真菌生物群中,很少有人评估植物区系生态位和植物物种对真菌群落变异的贡献,也很少有人揭示真菌群落的植物区系生态位分化。在本研究中,我们利用高通量DNA测序技术,对羌雍冰川亚荒漠带的三种高山草本植物(大黄、红景天和红景天)的根圈土壤、根内膜和叶内膜相关的真菌群落进行了定量分析。我们的研究结果表明,真菌群落多样性和组成的变化主要受植物区系生态位而非植物物种的影响。根圈土壤的真菌多样性和生态位广度水平最高,而叶片内圈的真菌多样性和生态位广度水平最低。不同植物区系生态位的真菌群落组成存在明显差异。与根圈土壤相比,根内圈和叶内圈的真菌共生网络更为复杂,并表现出更高的中心性和连通性。此外,我们还发现真菌群落的组成受决定性过程的支配,与根内真菌相比,寄主植物对叶内生真菌施加了更大的选择压力。与根圈土壤中的真菌群落相比,根内生菌是叶内生菌的主要潜在贡献者。此外,Pleosporaceae、Davidiellaceae 和 Chaetomiaceae 在两个植物区系壁龛(根系内生层和叶片内生层)中明显富集和重叠。总之,本研究揭示了与三种高山草本植物相关的真菌群落多样性和组成的变化主要受植物区系壁龛而非植物物种的影响。此外,本研究还揭示了与三种高山草本植物相关的真菌群落的多样性、组成、共生模式和组装过程表现出植物区系壁龛分异。这些结果为研究恶劣环境中与植物相关的真菌群落的集结和生态相互作用提供了新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Plant compartment niche is more important in structuring the fungal community associated with alpine herbs in the subnival belt of the Qiangyong glacier than plant species

Plant compartment niche is more important in structuring the fungal community associated with alpine herbs in the subnival belt of the Qiangyong glacier than plant species

The plant compartment niche (i.e., the host plant provides various microhabitats for the microbial community, such as the rhizosphere, root endosphere, leaf endosphere, and phylloplane) and plant species play a significant role in shaping the plant-associated microbial community assembly. However, in the mycobiome associated with alpine herbs in the subnival belt research, little work has been done to assess the contribution of plant compartment niches and plant species to fungal community variation and to reveal the plant compartment niche differentiation of fungal communities. In this study, we quantified the fungal communities associated with the rhizosphere soil, root endospheres, and leaf endospheres of three alpine herbs (Rheum spiciforme, Eriophyton wallichii, and Rhodiola bupleuroides) in the subnival belt of the Qiangyong glacier using high-throughput DNA sequencing. Our results revealed that the variation in diversity and composition of the fungal community was predominantly shaped by plant compartment niche rather than plant species. Rhizosphere soil exhibited the highest level of fungal diversity and niche breadth, while the lowest level was observed in the leaf endosphere. The fungal community composition significantly differed across different plant compartment niches. Fungal co-occurrence networks of the root endosphere and leaf endosphere were more complex and showed higher centrality and connectedness than the rhizosphere soil. Moreover, we also found that the deterministic process governed the fungal community assembly, and the host plant exerts stronger selection pressure on the leaf endophytes in comparison with the root endophytes. The root endophytes are the primary potential contributors to the leaf endophytes, compared with the fungal community associated with rhizosphere soil. Further, the Pleosporaceae, Davidiellaceae, and Chaetomiaceae were significantly enriched and overlapped in two plant compartment niches (root endosphere and leaf endosphere). Collectively, this study reveals that the variation in the diversity and composition of fungal communities associated with three alpine herbs were primarily affected by plant compartment niches rather than plant species. Additionally, this study also reveals that the diversity, composition, co-occurrence pattern, and assembly process of fungal communities associated with three alpine herbs exhibited plant compartment niche differentiation. These results provide a novel insight into the community assembly and ecological interactions of fungal communities associated with plants in harsh environments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Symbiosis
Symbiosis 生物-微生物学
CiteScore
4.80
自引率
8.00%
发文量
56
审稿时长
>12 weeks
期刊介绍: Since 1985, Symbiosis publishes original research that contributes to the understanding of symbiotic interactions in a wide range of associations at the molecular, cellular and organismic level. Reviews and short communications on well-known or new symbioses are welcomed as are book reviews and obituaries. This spectrum of papers aims to encourage and enhance interactions among researchers in this rapidly expanding field. Topics of interest include nutritional interactions; mutual regulatory and morphogenetic effects; structural co-adaptations; interspecific recognition; specificity; ecological adaptations; evolutionary consequences of symbiosis; and methods used for symbiotic research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信