{"title":"弱克莱因逻辑的有限希尔伯特系统","authors":"","doi":"10.1007/s11225-023-10079-w","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>Multiple-conclusion Hilbert-style systems allow us to finitely axiomatize every logic defined by a finite matrix. Having obtained such axiomatizations for Paraconsistent Weak Kleene and Bochvar–Kleene logics, we modify them by replacing the multiple-conclusion rules with carefully selected single-conclusion ones. In this way we manage to introduce the first <em>finite</em> Hilbert-style single-conclusion axiomatizations for these logics.</p>","PeriodicalId":48979,"journal":{"name":"Studia Logica","volume":"1 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Finite Hilbert Systems for Weak Kleene Logics\",\"authors\":\"\",\"doi\":\"10.1007/s11225-023-10079-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>Multiple-conclusion Hilbert-style systems allow us to finitely axiomatize every logic defined by a finite matrix. Having obtained such axiomatizations for Paraconsistent Weak Kleene and Bochvar–Kleene logics, we modify them by replacing the multiple-conclusion rules with carefully selected single-conclusion ones. In this way we manage to introduce the first <em>finite</em> Hilbert-style single-conclusion axiomatizations for these logics.</p>\",\"PeriodicalId\":48979,\"journal\":{\"name\":\"Studia Logica\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studia Logica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11225-023-10079-w\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"LOGIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studia Logica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11225-023-10079-w","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"LOGIC","Score":null,"Total":0}
Multiple-conclusion Hilbert-style systems allow us to finitely axiomatize every logic defined by a finite matrix. Having obtained such axiomatizations for Paraconsistent Weak Kleene and Bochvar–Kleene logics, we modify them by replacing the multiple-conclusion rules with carefully selected single-conclusion ones. In this way we manage to introduce the first finite Hilbert-style single-conclusion axiomatizations for these logics.
期刊介绍:
The leading idea of Lvov-Warsaw School of Logic, Philosophy and Mathematics was to investigate philosophical problems by means of rigorous methods of mathematics. Evidence of the great success the School experienced is the fact that it has become generally recognized as Polish Style Logic. Today Polish Style Logic is no longer exclusively a Polish speciality. It is represented by numerous logicians, mathematicians and philosophers from research centers all over the world.