{"title":"弱克莱因逻辑的有限希尔伯特系统","authors":"","doi":"10.1007/s11225-023-10079-w","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>Multiple-conclusion Hilbert-style systems allow us to finitely axiomatize every logic defined by a finite matrix. Having obtained such axiomatizations for Paraconsistent Weak Kleene and Bochvar–Kleene logics, we modify them by replacing the multiple-conclusion rules with carefully selected single-conclusion ones. In this way we manage to introduce the first <em>finite</em> Hilbert-style single-conclusion axiomatizations for these logics.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Finite Hilbert Systems for Weak Kleene Logics\",\"authors\":\"\",\"doi\":\"10.1007/s11225-023-10079-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>Multiple-conclusion Hilbert-style systems allow us to finitely axiomatize every logic defined by a finite matrix. Having obtained such axiomatizations for Paraconsistent Weak Kleene and Bochvar–Kleene logics, we modify them by replacing the multiple-conclusion rules with carefully selected single-conclusion ones. In this way we manage to introduce the first <em>finite</em> Hilbert-style single-conclusion axiomatizations for these logics.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11225-023-10079-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11225-023-10079-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multiple-conclusion Hilbert-style systems allow us to finitely axiomatize every logic defined by a finite matrix. Having obtained such axiomatizations for Paraconsistent Weak Kleene and Bochvar–Kleene logics, we modify them by replacing the multiple-conclusion rules with carefully selected single-conclusion ones. In this way we manage to introduce the first finite Hilbert-style single-conclusion axiomatizations for these logics.