高性能纤维增强水泥基复合材料在单轴压缩中的应变软化

IF 3.6 3区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY
Seung-Hee Kwon, Jung-Soo Lee, Kyungtaek Koh, Hyeong-Ki Kim
{"title":"高性能纤维增强水泥基复合材料在单轴压缩中的应变软化","authors":"Seung-Hee Kwon, Jung-Soo Lee, Kyungtaek Koh, Hyeong-Ki Kim","doi":"10.1186/s40069-023-00658-5","DOIUrl":null,"url":null,"abstract":"<p>This study investigates the strain softening behavior of high-performance fiber-reinforced cementitious composites (HPFRCCs) under uniaxial compression. HPFRCC mixtures with different compressive strengths ranged from 120 to 170 MPa were prepared. The measurement method of feedback control on loading rate based transverse displacement was applied. Stress–strain and stress−inelastic displacement curves were plotted and analyzed with the results in the literature. It was found that the post-peak energy absorption of HPFRCC considering inelastic deformation was about 3–7 times higher than conventional concrete. Based on the experimental results in the present work, fitting models on post-peak stress–strain/−displacement curves were considering for different aspect ratios proposed.</p>","PeriodicalId":13832,"journal":{"name":"International Journal of Concrete Structures and Materials","volume":"5 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strain Softening of High-Performance Fiber-Reinforced Cementitious Composites in Uniaxial Compression\",\"authors\":\"Seung-Hee Kwon, Jung-Soo Lee, Kyungtaek Koh, Hyeong-Ki Kim\",\"doi\":\"10.1186/s40069-023-00658-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study investigates the strain softening behavior of high-performance fiber-reinforced cementitious composites (HPFRCCs) under uniaxial compression. HPFRCC mixtures with different compressive strengths ranged from 120 to 170 MPa were prepared. The measurement method of feedback control on loading rate based transverse displacement was applied. Stress–strain and stress−inelastic displacement curves were plotted and analyzed with the results in the literature. It was found that the post-peak energy absorption of HPFRCC considering inelastic deformation was about 3–7 times higher than conventional concrete. Based on the experimental results in the present work, fitting models on post-peak stress–strain/−displacement curves were considering for different aspect ratios proposed.</p>\",\"PeriodicalId\":13832,\"journal\":{\"name\":\"International Journal of Concrete Structures and Materials\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Concrete Structures and Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1186/s40069-023-00658-5\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Concrete Structures and Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s40069-023-00658-5","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了高性能纤维增强水泥基复合材料(HPFRCC)在单轴压缩下的应变软化行为。制备了不同抗压强度(120 至 170 兆帕)的 HPFRCC 混合物。采用基于横向位移的加载速率反馈控制测量方法。绘制了应力-应变和应力-弹性位移曲线,并与文献结果进行了分析。结果发现,考虑到非弹性变形,HPFRCC 的峰值后能量吸收约为传统混凝土的 3-7 倍。根据实验结果,提出了不同长宽比的峰值后应力-应变/位移曲线拟合模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Strain Softening of High-Performance Fiber-Reinforced Cementitious Composites in Uniaxial Compression

Strain Softening of High-Performance Fiber-Reinforced Cementitious Composites in Uniaxial Compression

This study investigates the strain softening behavior of high-performance fiber-reinforced cementitious composites (HPFRCCs) under uniaxial compression. HPFRCC mixtures with different compressive strengths ranged from 120 to 170 MPa were prepared. The measurement method of feedback control on loading rate based transverse displacement was applied. Stress–strain and stress−inelastic displacement curves were plotted and analyzed with the results in the literature. It was found that the post-peak energy absorption of HPFRCC considering inelastic deformation was about 3–7 times higher than conventional concrete. Based on the experimental results in the present work, fitting models on post-peak stress–strain/−displacement curves were considering for different aspect ratios proposed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Concrete Structures and Materials
International Journal of Concrete Structures and Materials CONSTRUCTION & BUILDING TECHNOLOGY-ENGINEERING, CIVIL
CiteScore
6.30
自引率
5.90%
发文量
61
审稿时长
13 weeks
期刊介绍: The International Journal of Concrete Structures and Materials (IJCSM) provides a forum targeted for engineers and scientists around the globe to present and discuss various topics related to concrete, concrete structures and other applied materials incorporating cement cementitious binder, and polymer or fiber in conjunction with concrete. These forums give participants an opportunity to contribute their knowledge for the advancement of society. Topics include, but are not limited to, research results on Properties and performance of concrete and concrete structures Advanced and improved experimental techniques Latest modelling methods Possible improvement and enhancement of concrete properties Structural and microstructural characterization Concrete applications Fiber reinforced concrete technology Concrete waste management.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信