Benjamin Beach, Robert Burlacu, Andreas Bärmann, Lukas Hager, Robert Hildebrand
{"title":"非凸混合整数二次约束二次编程离散化方法的改进:第二部分","authors":"Benjamin Beach, Robert Burlacu, Andreas Bärmann, Lukas Hager, Robert Hildebrand","doi":"10.1007/s10589-024-00554-y","DOIUrl":null,"url":null,"abstract":"<p>This is Part II of a study on mixed-integer programming (MIP) relaxation techniques for the solution of non-convex mixed-integer quadratically constrained quadratic programs (MIQCQPs). We set the focus on MIP relaxation methods for non-convex continuous variable products where both variables are bounded and extend the well-known MIP relaxation <i>normalized multiparametric disaggregation technique</i>(NMDT), applying a sophisticated discretization to both variables. We refer to this approach as <i>doubly discretized normalized multiparametric disaggregation technique</i> (D-NMDT). In a comprehensive theoretical analysis, we underline the theoretical advantages of the enhanced method D-NMDT compared to NMDT. Furthermore, we perform a broad computational study to demonstrate its effectiveness in terms of producing tight dual bounds for MIQCQPs. Finally, we compare D-NMDT to the separable MIP relaxations from Part I and a state-of-the-art MIQCQP solver.</p>","PeriodicalId":55227,"journal":{"name":"Computational Optimization and Applications","volume":"26 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancements of discretization approaches for non-convex mixed-integer quadratically constrained quadratic programming: part II\",\"authors\":\"Benjamin Beach, Robert Burlacu, Andreas Bärmann, Lukas Hager, Robert Hildebrand\",\"doi\":\"10.1007/s10589-024-00554-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This is Part II of a study on mixed-integer programming (MIP) relaxation techniques for the solution of non-convex mixed-integer quadratically constrained quadratic programs (MIQCQPs). We set the focus on MIP relaxation methods for non-convex continuous variable products where both variables are bounded and extend the well-known MIP relaxation <i>normalized multiparametric disaggregation technique</i>(NMDT), applying a sophisticated discretization to both variables. We refer to this approach as <i>doubly discretized normalized multiparametric disaggregation technique</i> (D-NMDT). In a comprehensive theoretical analysis, we underline the theoretical advantages of the enhanced method D-NMDT compared to NMDT. Furthermore, we perform a broad computational study to demonstrate its effectiveness in terms of producing tight dual bounds for MIQCQPs. Finally, we compare D-NMDT to the separable MIP relaxations from Part I and a state-of-the-art MIQCQP solver.</p>\",\"PeriodicalId\":55227,\"journal\":{\"name\":\"Computational Optimization and Applications\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Optimization and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10589-024-00554-y\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Optimization and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10589-024-00554-y","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Enhancements of discretization approaches for non-convex mixed-integer quadratically constrained quadratic programming: part II
This is Part II of a study on mixed-integer programming (MIP) relaxation techniques for the solution of non-convex mixed-integer quadratically constrained quadratic programs (MIQCQPs). We set the focus on MIP relaxation methods for non-convex continuous variable products where both variables are bounded and extend the well-known MIP relaxation normalized multiparametric disaggregation technique(NMDT), applying a sophisticated discretization to both variables. We refer to this approach as doubly discretized normalized multiparametric disaggregation technique (D-NMDT). In a comprehensive theoretical analysis, we underline the theoretical advantages of the enhanced method D-NMDT compared to NMDT. Furthermore, we perform a broad computational study to demonstrate its effectiveness in terms of producing tight dual bounds for MIQCQPs. Finally, we compare D-NMDT to the separable MIP relaxations from Part I and a state-of-the-art MIQCQP solver.
期刊介绍:
Computational Optimization and Applications is a peer reviewed journal that is committed to timely publication of research and tutorial papers on the analysis and development of computational algorithms and modeling technology for optimization. Algorithms either for general classes of optimization problems or for more specific applied problems are of interest. Stochastic algorithms as well as deterministic algorithms will be considered. Papers that can provide both theoretical analysis, along with carefully designed computational experiments, are particularly welcome.
Topics of interest include, but are not limited to the following:
Large Scale Optimization,
Unconstrained Optimization,
Linear Programming,
Quadratic Programming Complementarity Problems, and Variational Inequalities,
Constrained Optimization,
Nondifferentiable Optimization,
Integer Programming,
Combinatorial Optimization,
Stochastic Optimization,
Multiobjective Optimization,
Network Optimization,
Complexity Theory,
Approximations and Error Analysis,
Parametric Programming and Sensitivity Analysis,
Parallel Computing, Distributed Computing, and Vector Processing,
Software, Benchmarks, Numerical Experimentation and Comparisons,
Modelling Languages and Systems for Optimization,
Automatic Differentiation,
Applications in Engineering, Finance, Optimal Control, Optimal Design, Operations Research,
Transportation, Economics, Communications, Manufacturing, and Management Science.