低强度钢管在运行中因氢化而受损的发展机理

IF 0.7 4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY
O. I. Zvirko, M. I. Hredil, O. T. Tsyrulnyk, O. Z. Student, H. M. Nykyforchyn
{"title":"低强度钢管在运行中因氢化而受损的发展机理","authors":"O. I. Zvirko, M. I. Hredil, O. T. Tsyrulnyk, O. Z. Student, H. M. Nykyforchyn","doi":"10.1007/s11003-024-00778-7","DOIUrl":null,"url":null,"abstract":"<p>Resistance of pipe steels to hydrogen embrittlement is an important indicator of their serviceability. Pipes are manufactured from steels of a wide strength range. With the strength increase, a susceptibility to hydrogen embrittlement in general increases. This regularity is usually true for steels in the as-received state; however, the long-term operation can increase hydrogen susceptibility even of low- strength steels. This is caused by the development of damage dissipated in the metal bulk with the formation of voids due to deformation caused by high-pressure recombined hydrogen in them. Implementation of the hydrogen-induced damage mechanism, associated with the formation of deformation voids, extends the strength range of pipe steels, which become prone to operational hydrogen embrittlement.</p>","PeriodicalId":18230,"journal":{"name":"Materials Science","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanism of Development of Damage of Low-Strength Pipe Steel Due to Hydrogenation Under Operation\",\"authors\":\"O. I. Zvirko, M. I. Hredil, O. T. Tsyrulnyk, O. Z. Student, H. M. Nykyforchyn\",\"doi\":\"10.1007/s11003-024-00778-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Resistance of pipe steels to hydrogen embrittlement is an important indicator of their serviceability. Pipes are manufactured from steels of a wide strength range. With the strength increase, a susceptibility to hydrogen embrittlement in general increases. This regularity is usually true for steels in the as-received state; however, the long-term operation can increase hydrogen susceptibility even of low- strength steels. This is caused by the development of damage dissipated in the metal bulk with the formation of voids due to deformation caused by high-pressure recombined hydrogen in them. Implementation of the hydrogen-induced damage mechanism, associated with the formation of deformation voids, extends the strength range of pipe steels, which become prone to operational hydrogen embrittlement.</p>\",\"PeriodicalId\":18230,\"journal\":{\"name\":\"Materials Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s11003-024-00778-7\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s11003-024-00778-7","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

钢管的抗氢脆性能是衡量其适用性的一个重要指标。钢管由各种强度的钢材制造而成。随着强度的增加,氢脆的易感性一般也会增加。这种规律性通常适用于刚收到的钢材;但是,即使是低强度钢材,长期使用也会增加氢脆敏感性。这是由于高压氢在金属块体中重新结合产生变形,形成空隙,导致金属块体中的损伤耗散。与变形空隙的形成有关的氢致损伤机制的实施扩大了管材钢的强度范围,使其容易发生操作性氢脆。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Mechanism of Development of Damage of Low-Strength Pipe Steel Due to Hydrogenation Under Operation

Mechanism of Development of Damage of Low-Strength Pipe Steel Due to Hydrogenation Under Operation

Resistance of pipe steels to hydrogen embrittlement is an important indicator of their serviceability. Pipes are manufactured from steels of a wide strength range. With the strength increase, a susceptibility to hydrogen embrittlement in general increases. This regularity is usually true for steels in the as-received state; however, the long-term operation can increase hydrogen susceptibility even of low- strength steels. This is caused by the development of damage dissipated in the metal bulk with the formation of voids due to deformation caused by high-pressure recombined hydrogen in them. Implementation of the hydrogen-induced damage mechanism, associated with the formation of deformation voids, extends the strength range of pipe steels, which become prone to operational hydrogen embrittlement.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Science
Materials Science 工程技术-材料科学:综合
CiteScore
1.60
自引率
44.40%
发文量
63
审稿时长
4-8 weeks
期刊介绍: Materials Science reports on current research into such problems as cracking, fatigue and fracture, especially in active environments as well as corrosion and anticorrosion protection of structural metallic and polymer materials, and the development of new materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信