{"title":"带列维噪声的麦金-弗拉索夫型兰万动力学的指数收缩性和混沌传播","authors":"","doi":"10.1007/s11118-024-10130-y","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>By the probabilistic coupling approach which combines a new refined basic coupling with the synchronous coupling for Lévy processes, we obtain explicit exponential contraction rates in terms of the standard <span> <span>\\(L^1\\)</span> </span>-Wasserstein distance for the following Langevin dynamic <span> <span>\\((X_t,Y_t)_{t\\ge 0}\\)</span> </span> of McKean-Vlasov type on <span> <span>\\(\\mathbb R^{2d}\\)</span> </span>: <span> <span>$$\\begin{aligned} \\left\\{ \\begin{array}{l} dX_t=Y_t\\,dt,\\\\ dY_t=\\left( b(X_t)+\\displaystyle \\int _{\\mathbb R^d}\\tilde{b}(X_t,z)\\,\\mu ^X_t(dz)-{\\gamma }Y_t\\right) \\,dt+dL_t,\\quad \\mu ^X_t=\\textrm{Law}(X_t), \\end{array} \\right. \\end{aligned}$$</span> </span>where <span> <span>\\({\\gamma }>0\\)</span> </span>, <span> <span>\\(b:\\mathbb R^d\\rightarrow \\mathbb R^d\\)</span> </span> and <span> <span>\\(\\tilde{b}:\\mathbb R^{2d}\\rightarrow \\mathbb R^d\\)</span> </span> are two globally Lipschitz continuous functions, and <span> <span>\\((L_t)_{t\\ge 0}\\)</span> </span> is an <span> <span>\\(\\mathbb R^d\\)</span> </span>-valued pure jump Lévy process. The proof is also based on a novel distance function, which is designed according to the distance of the marginals associated with the constructed coupling process. Furthermore, by applying the coupling technique above with some modifications, we also provide the propagation of chaos uniformly in time for the corresponding mean-field interacting particle systems with Lévy noises in the standard <span> <span>\\(L^1\\)</span> </span>-Wasserstein distance as well as with explicit bounds.</p>","PeriodicalId":49679,"journal":{"name":"Potential Analysis","volume":"9 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exponential Contractivity and Propagation of Chaos for Langevin Dynamics of McKean-Vlasov Type with Lévy Noises\",\"authors\":\"\",\"doi\":\"10.1007/s11118-024-10130-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>By the probabilistic coupling approach which combines a new refined basic coupling with the synchronous coupling for Lévy processes, we obtain explicit exponential contraction rates in terms of the standard <span> <span>\\\\(L^1\\\\)</span> </span>-Wasserstein distance for the following Langevin dynamic <span> <span>\\\\((X_t,Y_t)_{t\\\\ge 0}\\\\)</span> </span> of McKean-Vlasov type on <span> <span>\\\\(\\\\mathbb R^{2d}\\\\)</span> </span>: <span> <span>$$\\\\begin{aligned} \\\\left\\\\{ \\\\begin{array}{l} dX_t=Y_t\\\\,dt,\\\\\\\\ dY_t=\\\\left( b(X_t)+\\\\displaystyle \\\\int _{\\\\mathbb R^d}\\\\tilde{b}(X_t,z)\\\\,\\\\mu ^X_t(dz)-{\\\\gamma }Y_t\\\\right) \\\\,dt+dL_t,\\\\quad \\\\mu ^X_t=\\\\textrm{Law}(X_t), \\\\end{array} \\\\right. \\\\end{aligned}$$</span> </span>where <span> <span>\\\\({\\\\gamma }>0\\\\)</span> </span>, <span> <span>\\\\(b:\\\\mathbb R^d\\\\rightarrow \\\\mathbb R^d\\\\)</span> </span> and <span> <span>\\\\(\\\\tilde{b}:\\\\mathbb R^{2d}\\\\rightarrow \\\\mathbb R^d\\\\)</span> </span> are two globally Lipschitz continuous functions, and <span> <span>\\\\((L_t)_{t\\\\ge 0}\\\\)</span> </span> is an <span> <span>\\\\(\\\\mathbb R^d\\\\)</span> </span>-valued pure jump Lévy process. The proof is also based on a novel distance function, which is designed according to the distance of the marginals associated with the constructed coupling process. Furthermore, by applying the coupling technique above with some modifications, we also provide the propagation of chaos uniformly in time for the corresponding mean-field interacting particle systems with Lévy noises in the standard <span> <span>\\\\(L^1\\\\)</span> </span>-Wasserstein distance as well as with explicit bounds.</p>\",\"PeriodicalId\":49679,\"journal\":{\"name\":\"Potential Analysis\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Potential Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11118-024-10130-y\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Potential Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11118-024-10130-y","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Exponential Contractivity and Propagation of Chaos for Langevin Dynamics of McKean-Vlasov Type with Lévy Noises
Abstract
By the probabilistic coupling approach which combines a new refined basic coupling with the synchronous coupling for Lévy processes, we obtain explicit exponential contraction rates in terms of the standard \(L^1\)-Wasserstein distance for the following Langevin dynamic \((X_t,Y_t)_{t\ge 0}\) of McKean-Vlasov type on \(\mathbb R^{2d}\): $$\begin{aligned} \left\{ \begin{array}{l} dX_t=Y_t\,dt,\\ dY_t=\left( b(X_t)+\displaystyle \int _{\mathbb R^d}\tilde{b}(X_t,z)\,\mu ^X_t(dz)-{\gamma }Y_t\right) \,dt+dL_t,\quad \mu ^X_t=\textrm{Law}(X_t), \end{array} \right. \end{aligned}$$where \({\gamma }>0\), \(b:\mathbb R^d\rightarrow \mathbb R^d\) and \(\tilde{b}:\mathbb R^{2d}\rightarrow \mathbb R^d\) are two globally Lipschitz continuous functions, and \((L_t)_{t\ge 0}\) is an \(\mathbb R^d\)-valued pure jump Lévy process. The proof is also based on a novel distance function, which is designed according to the distance of the marginals associated with the constructed coupling process. Furthermore, by applying the coupling technique above with some modifications, we also provide the propagation of chaos uniformly in time for the corresponding mean-field interacting particle systems with Lévy noises in the standard \(L^1\)-Wasserstein distance as well as with explicit bounds.
期刊介绍:
The journal publishes original papers dealing with potential theory and its applications, probability theory, geometry and functional analysis and in particular estimations of the solutions of elliptic and parabolic equations; analysis of semi-groups, resolvent kernels, harmonic spaces and Dirichlet forms; Markov processes, Markov kernels, stochastic differential equations, diffusion processes and Levy processes; analysis of diffusions, heat kernels and resolvent kernels on fractals; infinite dimensional analysis, Gaussian analysis, analysis of infinite particle systems, of interacting particle systems, of Gibbs measures, of path and loop spaces; connections with global geometry, linear and non-linear analysis on Riemannian manifolds, Lie groups, graphs, and other geometric structures; non-linear or semilinear generalizations of elliptic or parabolic equations and operators; harmonic analysis, ergodic theory, dynamical systems; boundary value problems, Martin boundaries, Poisson boundaries, etc.