ZHIGANG WANG, A-MING LIU, VASILY G. SAFONOV, ALEXANDER N. SKIBA
{"title":"可溶性-群的特征","authors":"ZHIGANG WANG, A-MING LIU, VASILY G. SAFONOV, ALEXANDER N. SKIBA","doi":"10.1017/s0004972724000157","DOIUrl":null,"url":null,"abstract":"Let <jats:italic>G</jats:italic> be a finite group. A subgroup <jats:italic>A</jats:italic> of <jats:italic>G</jats:italic> is said to be <jats:italic>S-permutable</jats:italic> in <jats:italic>G</jats:italic> if <jats:italic>A</jats:italic> permutes with every Sylow subgroup <jats:italic>P</jats:italic> of <jats:italic>G</jats:italic>, that is, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000157_inline2.png\" /> <jats:tex-math> $AP=PA$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. Let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000157_inline3.png\" /> <jats:tex-math> $A_{sG}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> be the subgroup of <jats:italic>A</jats:italic> generated by all <jats:italic>S</jats:italic>-permutable subgroups of <jats:italic>G</jats:italic> contained in <jats:italic>A</jats:italic> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000157_inline4.png\" /> <jats:tex-math> $A^{sG}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> be the intersection of all <jats:italic>S</jats:italic>-permutable subgroups of <jats:italic>G</jats:italic> containing <jats:italic>A</jats:italic>. We prove that if <jats:italic>G</jats:italic> is a soluble group, then <jats:italic>S</jats:italic>-permutability is a transitive relation in <jats:italic>G</jats:italic> if and only if the nilpotent residual <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000157_inline5.png\" /> <jats:tex-math> $G^{\\mathfrak {N}}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> of <jats:italic>G</jats:italic> avoids the pair <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000157_inline6.png\" /> <jats:tex-math> $(A^{s G}, A_{sG})$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, that is, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000157_inline7.png\" /> <jats:tex-math> $G^{\\mathfrak {N}}\\cap A^{sG}= G^{\\mathfrak {N}}\\cap A_{sG}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> for every subnormal subgroup <jats:italic>A</jats:italic> of <jats:italic>G</jats:italic>.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A CHARACTERISATION OF SOLUBLE -GROUPS\",\"authors\":\"ZHIGANG WANG, A-MING LIU, VASILY G. SAFONOV, ALEXANDER N. SKIBA\",\"doi\":\"10.1017/s0004972724000157\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let <jats:italic>G</jats:italic> be a finite group. A subgroup <jats:italic>A</jats:italic> of <jats:italic>G</jats:italic> is said to be <jats:italic>S-permutable</jats:italic> in <jats:italic>G</jats:italic> if <jats:italic>A</jats:italic> permutes with every Sylow subgroup <jats:italic>P</jats:italic> of <jats:italic>G</jats:italic>, that is, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0004972724000157_inline2.png\\\" /> <jats:tex-math> $AP=PA$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. Let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0004972724000157_inline3.png\\\" /> <jats:tex-math> $A_{sG}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> be the subgroup of <jats:italic>A</jats:italic> generated by all <jats:italic>S</jats:italic>-permutable subgroups of <jats:italic>G</jats:italic> contained in <jats:italic>A</jats:italic> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0004972724000157_inline4.png\\\" /> <jats:tex-math> $A^{sG}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> be the intersection of all <jats:italic>S</jats:italic>-permutable subgroups of <jats:italic>G</jats:italic> containing <jats:italic>A</jats:italic>. We prove that if <jats:italic>G</jats:italic> is a soluble group, then <jats:italic>S</jats:italic>-permutability is a transitive relation in <jats:italic>G</jats:italic> if and only if the nilpotent residual <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0004972724000157_inline5.png\\\" /> <jats:tex-math> $G^{\\\\mathfrak {N}}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> of <jats:italic>G</jats:italic> avoids the pair <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0004972724000157_inline6.png\\\" /> <jats:tex-math> $(A^{s G}, A_{sG})$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, that is, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0004972724000157_inline7.png\\\" /> <jats:tex-math> $G^{\\\\mathfrak {N}}\\\\cap A^{sG}= G^{\\\\mathfrak {N}}\\\\cap A_{sG}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> for every subnormal subgroup <jats:italic>A</jats:italic> of <jats:italic>G</jats:italic>.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/s0004972724000157\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0004972724000157","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
设 G 是一个有限群。如果 G 的子群 A 与 G 的每个 Sylow 子群 P 都发生包络,即 $AP=PA$ ,则称 G 的子群 A 在 G 中是 S 可包络的。设 $A_{sG}$ 是由包含在 A 中的所有 G 的 S-permutable 子群生成的 A 子群,而 $A^{sG}$ 是包含 A 的所有 G 的 S-permutable 子群的交集。我们证明,如果 G 是可解群,那么当且仅当 G 的零能残差 $G^{\mathfrak {N}}$ 避免了一对 $(A^{s G}、A_{sG})$ ,也就是说,对于 G 的每个子正常子群 A,$G^{mathfrak {N}\cap A^{sG}= G^{mathfrak {N}\cap A_{sG}$ 。
Let G be a finite group. A subgroup A of G is said to be S-permutable in G if A permutes with every Sylow subgroup P of G, that is, $AP=PA$ . Let $A_{sG}$ be the subgroup of A generated by all S-permutable subgroups of G contained in A and $A^{sG}$ be the intersection of all S-permutable subgroups of G containing A. We prove that if G is a soluble group, then S-permutability is a transitive relation in G if and only if the nilpotent residual $G^{\mathfrak {N}}$ of G avoids the pair $(A^{s G}, A_{sG})$ , that is, $G^{\mathfrak {N}}\cap A^{sG}= G^{\mathfrak {N}}\cap A_{sG}$ for every subnormal subgroup A of G.