利用深度学习逆向设计一维拓扑光子系统

IF 1.1 4区 物理与天体物理 Q3 PHYSICS, MULTIDISCIPLINARY
M. El Ghafiani, M. Elaouni, S. Khattou, Y. Rezzouk, M. Amrani, O. Marbouh, M. Boutghatin, A. Talbi, E. H. El Boudouti, B. Djafari-Rouhani
{"title":"利用深度学习逆向设计一维拓扑光子系统","authors":"M. El Ghafiani,&nbsp;M. Elaouni,&nbsp;S. Khattou,&nbsp;Y. Rezzouk,&nbsp;M. Amrani,&nbsp;O. Marbouh,&nbsp;M. Boutghatin,&nbsp;A. Talbi,&nbsp;E. H. El Boudouti,&nbsp;B. Djafari-Rouhani","doi":"10.3103/S1541308X24010047","DOIUrl":null,"url":null,"abstract":"<p>We demonstrate a novel approach to inversely design one-dimensional (1D) photonic stubbed systems with targeted topological properties by leveraging the power of deep learning. The process involves developing a data-driven model to accurately predict the geometric parameters of the photonic system based on a label vector that encodes the targeted topological properties. A tandem network comprising an inverse network connected to a pre-trained forward network is trained to efficiently learn the intricate relationship between the system’s topological properties and the corresponding geometry. After training, the model is shown to effectively perform the inverse design task. The study’s outcomes give new perspectives for the design of topological photonic systems.</p>","PeriodicalId":732,"journal":{"name":"Physics of Wave Phenomena","volume":"32 1","pages":"48 - 55"},"PeriodicalIF":1.1000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inverse Design of One-Dimensional Topological Photonic Systems Using Deep Learning\",\"authors\":\"M. El Ghafiani,&nbsp;M. Elaouni,&nbsp;S. Khattou,&nbsp;Y. Rezzouk,&nbsp;M. Amrani,&nbsp;O. Marbouh,&nbsp;M. Boutghatin,&nbsp;A. Talbi,&nbsp;E. H. El Boudouti,&nbsp;B. Djafari-Rouhani\",\"doi\":\"10.3103/S1541308X24010047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We demonstrate a novel approach to inversely design one-dimensional (1D) photonic stubbed systems with targeted topological properties by leveraging the power of deep learning. The process involves developing a data-driven model to accurately predict the geometric parameters of the photonic system based on a label vector that encodes the targeted topological properties. A tandem network comprising an inverse network connected to a pre-trained forward network is trained to efficiently learn the intricate relationship between the system’s topological properties and the corresponding geometry. After training, the model is shown to effectively perform the inverse design task. The study’s outcomes give new perspectives for the design of topological photonic systems.</p>\",\"PeriodicalId\":732,\"journal\":{\"name\":\"Physics of Wave Phenomena\",\"volume\":\"32 1\",\"pages\":\"48 - 55\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics of Wave Phenomena\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.3103/S1541308X24010047\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of Wave Phenomena","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.3103/S1541308X24010047","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

摘要 我们展示了一种新颖的方法,通过利用深度学习的力量,反向设计具有目标拓扑特性的一维(1D)光子存根系统。这一过程包括开发一个数据驱动模型,根据编码目标拓扑特性的标签向量准确预测光子系统的几何参数。由一个反向网络和一个预先训练好的正向网络组成的串联网络经过训练,可以高效地学习系统拓扑特性与相应几何参数之间的复杂关系。经过训练后,该模型可以有效地完成逆向设计任务。研究成果为拓扑光子系统的设计提供了新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Inverse Design of One-Dimensional Topological Photonic Systems Using Deep Learning

Inverse Design of One-Dimensional Topological Photonic Systems Using Deep Learning

We demonstrate a novel approach to inversely design one-dimensional (1D) photonic stubbed systems with targeted topological properties by leveraging the power of deep learning. The process involves developing a data-driven model to accurately predict the geometric parameters of the photonic system based on a label vector that encodes the targeted topological properties. A tandem network comprising an inverse network connected to a pre-trained forward network is trained to efficiently learn the intricate relationship between the system’s topological properties and the corresponding geometry. After training, the model is shown to effectively perform the inverse design task. The study’s outcomes give new perspectives for the design of topological photonic systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physics of Wave Phenomena
Physics of Wave Phenomena PHYSICS, MULTIDISCIPLINARY-
CiteScore
2.50
自引率
21.40%
发文量
43
审稿时长
>12 weeks
期刊介绍: Physics of Wave Phenomena publishes original contributions in general and nonlinear wave theory, original experimental results in optics, acoustics and radiophysics. The fields of physics represented in this journal include nonlinear optics, acoustics, and radiophysics; nonlinear effects of any nature including nonlinear dynamics and chaos; phase transitions including light- and sound-induced; laser physics; optical and other spectroscopies; new instruments, methods, and measurements of wave and oscillatory processes; remote sensing of waves in natural media; wave interactions in biophysics, econophysics and other cross-disciplinary areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信