{"title":"探索过二亚胺与生物大分子复合物的非线性光学特性:超分子计算研究","authors":"","doi":"10.1007/s00214-024-03098-w","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>This study investigates the supramolecular interactions between perylene diimides (PDI) and nucleotides, specifically adenosine monophosphate (AMP) and cytidine monophosphate (CMP). Ten complexes (complex 1 (<span>l</span>-ala-PDI-AMP), complex 2 (B-ala-PDI-AMP), complex 3 (GLY-PDI-AMP), complex 4 (IMI-PDI-AMP), complex 5 (PYR-PDI-AMP, complex 6 (<span>l</span>-ala-PDI-CMP), complex 7 (B-ala-PDI-CMP), complex 8 (GLY-PDI-CMP), complex 9 (IMI-PDI-CMP), and complex 10 (PYR-PDI-CMP), were simulated using the B3LYP/6-31G(d,p) level of DFT method. The study explores NMR, IR, UV, hyperpolarizabilities, frontier molecular orbitals (FMOs), density of states (DOS), noncovalent interactions (NCI), iso-surface analysis, atom in molecule (AIM), dipole moment (<em>µ</em>), electron density distribution map (EDDM), transition density matrix (TDM), molecular electrostatic potential (MEP), and electron–hole analysis (EHA) using differential functional theory (DFT). The weak bonds formed were visualized using Discovery Studio Visualizer. The electronic properties of the complexes were examined through natural bond orbital (NBO) and natural population analysis (NPA), leading to nonlinear optics (NLO) study. Complex 6 demonstrates the highest NLO activity with γ static of 17,424,700.00, and complex 10 exhibits the weakest NLO activity with second dipole hyperpolarizability (γ static) at 25,116.10. Moreover, global reactivity factors for complexes 1–5 show EA ranging from 6.53 to 7.7, and ionization potential (IP) spans 7.8–8.8. Global hardness values highlight complex 4 as the hardest (<em>η</em> = 0.55) and complex 1 as the softest (<em>η</em> = 0.51). Electronegativity (X) varies from 7.28 to 8.25, with complex 3 being the most electronegative. Chemical potential (<em>μ</em>) ranges from − 7.9 to − 8.25, global softness (<em>σ</em>) identifies complex 1 as the softest (0.2575) and complex 4 as the hardest (0.435). Electrophilicity (<em>ω</em>) ranges from 33.30 to 61.87. Complexes 6–10 show EA from 6.7 to 7.53. IP values range from 8.4 to 8.6, with complexes 7 and 10 highest. Global hardness spans 0.53 to 0.85. <em>X</em> ranges from 7.55 to 8.06, with complex 7 the most electronegative. μ varies from − 7.55 to − 8.06, and complex 7 has the lowest. From <em>σ</em> values, complexes 9 and 10 are the softest. <em>ω</em> ranges from 35.53 to 60.78, with complex 7 the most electrophilic.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring nonlinear optical properties of perylene diimide and biomolecules complexes: a computational supramolecular study\",\"authors\":\"\",\"doi\":\"10.1007/s00214-024-03098-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>This study investigates the supramolecular interactions between perylene diimides (PDI) and nucleotides, specifically adenosine monophosphate (AMP) and cytidine monophosphate (CMP). Ten complexes (complex 1 (<span>l</span>-ala-PDI-AMP), complex 2 (B-ala-PDI-AMP), complex 3 (GLY-PDI-AMP), complex 4 (IMI-PDI-AMP), complex 5 (PYR-PDI-AMP, complex 6 (<span>l</span>-ala-PDI-CMP), complex 7 (B-ala-PDI-CMP), complex 8 (GLY-PDI-CMP), complex 9 (IMI-PDI-CMP), and complex 10 (PYR-PDI-CMP), were simulated using the B3LYP/6-31G(d,p) level of DFT method. The study explores NMR, IR, UV, hyperpolarizabilities, frontier molecular orbitals (FMOs), density of states (DOS), noncovalent interactions (NCI), iso-surface analysis, atom in molecule (AIM), dipole moment (<em>µ</em>), electron density distribution map (EDDM), transition density matrix (TDM), molecular electrostatic potential (MEP), and electron–hole analysis (EHA) using differential functional theory (DFT). The weak bonds formed were visualized using Discovery Studio Visualizer. The electronic properties of the complexes were examined through natural bond orbital (NBO) and natural population analysis (NPA), leading to nonlinear optics (NLO) study. Complex 6 demonstrates the highest NLO activity with γ static of 17,424,700.00, and complex 10 exhibits the weakest NLO activity with second dipole hyperpolarizability (γ static) at 25,116.10. Moreover, global reactivity factors for complexes 1–5 show EA ranging from 6.53 to 7.7, and ionization potential (IP) spans 7.8–8.8. Global hardness values highlight complex 4 as the hardest (<em>η</em> = 0.55) and complex 1 as the softest (<em>η</em> = 0.51). Electronegativity (X) varies from 7.28 to 8.25, with complex 3 being the most electronegative. Chemical potential (<em>μ</em>) ranges from − 7.9 to − 8.25, global softness (<em>σ</em>) identifies complex 1 as the softest (0.2575) and complex 4 as the hardest (0.435). Electrophilicity (<em>ω</em>) ranges from 33.30 to 61.87. Complexes 6–10 show EA from 6.7 to 7.53. IP values range from 8.4 to 8.6, with complexes 7 and 10 highest. Global hardness spans 0.53 to 0.85. <em>X</em> ranges from 7.55 to 8.06, with complex 7 the most electronegative. μ varies from − 7.55 to − 8.06, and complex 7 has the lowest. From <em>σ</em> values, complexes 9 and 10 are the softest. <em>ω</em> ranges from 35.53 to 60.78, with complex 7 the most electrophilic.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1007/s00214-024-03098-w\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s00214-024-03098-w","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Exploring nonlinear optical properties of perylene diimide and biomolecules complexes: a computational supramolecular study
Abstract
This study investigates the supramolecular interactions between perylene diimides (PDI) and nucleotides, specifically adenosine monophosphate (AMP) and cytidine monophosphate (CMP). Ten complexes (complex 1 (l-ala-PDI-AMP), complex 2 (B-ala-PDI-AMP), complex 3 (GLY-PDI-AMP), complex 4 (IMI-PDI-AMP), complex 5 (PYR-PDI-AMP, complex 6 (l-ala-PDI-CMP), complex 7 (B-ala-PDI-CMP), complex 8 (GLY-PDI-CMP), complex 9 (IMI-PDI-CMP), and complex 10 (PYR-PDI-CMP), were simulated using the B3LYP/6-31G(d,p) level of DFT method. The study explores NMR, IR, UV, hyperpolarizabilities, frontier molecular orbitals (FMOs), density of states (DOS), noncovalent interactions (NCI), iso-surface analysis, atom in molecule (AIM), dipole moment (µ), electron density distribution map (EDDM), transition density matrix (TDM), molecular electrostatic potential (MEP), and electron–hole analysis (EHA) using differential functional theory (DFT). The weak bonds formed were visualized using Discovery Studio Visualizer. The electronic properties of the complexes were examined through natural bond orbital (NBO) and natural population analysis (NPA), leading to nonlinear optics (NLO) study. Complex 6 demonstrates the highest NLO activity with γ static of 17,424,700.00, and complex 10 exhibits the weakest NLO activity with second dipole hyperpolarizability (γ static) at 25,116.10. Moreover, global reactivity factors for complexes 1–5 show EA ranging from 6.53 to 7.7, and ionization potential (IP) spans 7.8–8.8. Global hardness values highlight complex 4 as the hardest (η = 0.55) and complex 1 as the softest (η = 0.51). Electronegativity (X) varies from 7.28 to 8.25, with complex 3 being the most electronegative. Chemical potential (μ) ranges from − 7.9 to − 8.25, global softness (σ) identifies complex 1 as the softest (0.2575) and complex 4 as the hardest (0.435). Electrophilicity (ω) ranges from 33.30 to 61.87. Complexes 6–10 show EA from 6.7 to 7.53. IP values range from 8.4 to 8.6, with complexes 7 and 10 highest. Global hardness spans 0.53 to 0.85. X ranges from 7.55 to 8.06, with complex 7 the most electronegative. μ varies from − 7.55 to − 8.06, and complex 7 has the lowest. From σ values, complexes 9 and 10 are the softest. ω ranges from 35.53 to 60.78, with complex 7 the most electrophilic.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.