Albara Almawazreh, Daniel Uteau, C. T. Subbarayappa, Andreas Buerkert, Sybille Lehmann, Stephan Peth
{"title":"模拟氮肥对南印度玉米、小指米和马铃薯作物水循环和用水效率的影响","authors":"Albara Almawazreh, Daniel Uteau, C. T. Subbarayappa, Andreas Buerkert, Sybille Lehmann, Stephan Peth","doi":"10.1002/vzj2.20319","DOIUrl":null,"url":null,"abstract":"The understanding of the impact of nitrogen (N) fertilization on the field water cycle and corresponding water use efficiency (WUE) is very important for optimizing fertilization rates and conserving stressed water resources. We modeled soil moisture dynamics of maize (<jats:italic>Zea mays</jats:italic> L.), finger millet (<jats:italic>Eleusine coracana Gaertn</jats:italic>.), and lablab [<jats:italic>Lablab purpureus</jats:italic> (L..) <jats:italic>Sweet</jats:italic>] plots using calibrated HYDRUS‐1D model on two experimental sites (rain‐fed and irrigated) for three seasons under different N treatments. The results indicate that the effects of N depended on plant specific properties such as N‐fixation and drought tolerance, and on plant available water content governed by soil structure and rainfall seasonal variability. Maize WUE of plots which received 150 kg/ha of urea (46 N) were 10–30 kg/ha/mm higher than plots which received none; likewise, millet that received 50 kg/ha of urea had a 7–10 kg/ha/mm higher WUE than control plots in both experiments. However, differences in water cycle components were noticeable between N treatments only in the rain‐fed experiment, where higher N levels led to around 60 and 30 mm higher transpiration, 30 and 20 mm lower evaporation, and 30 and 15 mm lower percolation per season for maize and millet, respectively. In 2018, which was the driest year, the difference in maize WUE between the high and low N treatments was only 1 kg/ha/mm, which corresponded with low actual to potential transpiration ratios (). This indicates higher sensitivity of maize to water stress compared to the other crops. The results of lablab indicate a positive impact of N fertilization on WUE only under water‐limited conditions.","PeriodicalId":23594,"journal":{"name":"Vadose Zone Journal","volume":"31 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling N fertilization impact on water cycle and water use efficiency of maize, finger‐millet, and lablab crops in South India\",\"authors\":\"Albara Almawazreh, Daniel Uteau, C. T. Subbarayappa, Andreas Buerkert, Sybille Lehmann, Stephan Peth\",\"doi\":\"10.1002/vzj2.20319\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The understanding of the impact of nitrogen (N) fertilization on the field water cycle and corresponding water use efficiency (WUE) is very important for optimizing fertilization rates and conserving stressed water resources. We modeled soil moisture dynamics of maize (<jats:italic>Zea mays</jats:italic> L.), finger millet (<jats:italic>Eleusine coracana Gaertn</jats:italic>.), and lablab [<jats:italic>Lablab purpureus</jats:italic> (L..) <jats:italic>Sweet</jats:italic>] plots using calibrated HYDRUS‐1D model on two experimental sites (rain‐fed and irrigated) for three seasons under different N treatments. The results indicate that the effects of N depended on plant specific properties such as N‐fixation and drought tolerance, and on plant available water content governed by soil structure and rainfall seasonal variability. Maize WUE of plots which received 150 kg/ha of urea (46 N) were 10–30 kg/ha/mm higher than plots which received none; likewise, millet that received 50 kg/ha of urea had a 7–10 kg/ha/mm higher WUE than control plots in both experiments. However, differences in water cycle components were noticeable between N treatments only in the rain‐fed experiment, where higher N levels led to around 60 and 30 mm higher transpiration, 30 and 20 mm lower evaporation, and 30 and 15 mm lower percolation per season for maize and millet, respectively. In 2018, which was the driest year, the difference in maize WUE between the high and low N treatments was only 1 kg/ha/mm, which corresponded with low actual to potential transpiration ratios (). This indicates higher sensitivity of maize to water stress compared to the other crops. The results of lablab indicate a positive impact of N fertilization on WUE only under water‐limited conditions.\",\"PeriodicalId\":23594,\"journal\":{\"name\":\"Vadose Zone Journal\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vadose Zone Journal\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1002/vzj2.20319\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vadose Zone Journal","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1002/vzj2.20319","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Modeling N fertilization impact on water cycle and water use efficiency of maize, finger‐millet, and lablab crops in South India
The understanding of the impact of nitrogen (N) fertilization on the field water cycle and corresponding water use efficiency (WUE) is very important for optimizing fertilization rates and conserving stressed water resources. We modeled soil moisture dynamics of maize (Zea mays L.), finger millet (Eleusine coracana Gaertn.), and lablab [Lablab purpureus (L..) Sweet] plots using calibrated HYDRUS‐1D model on two experimental sites (rain‐fed and irrigated) for three seasons under different N treatments. The results indicate that the effects of N depended on plant specific properties such as N‐fixation and drought tolerance, and on plant available water content governed by soil structure and rainfall seasonal variability. Maize WUE of plots which received 150 kg/ha of urea (46 N) were 10–30 kg/ha/mm higher than plots which received none; likewise, millet that received 50 kg/ha of urea had a 7–10 kg/ha/mm higher WUE than control plots in both experiments. However, differences in water cycle components were noticeable between N treatments only in the rain‐fed experiment, where higher N levels led to around 60 and 30 mm higher transpiration, 30 and 20 mm lower evaporation, and 30 and 15 mm lower percolation per season for maize and millet, respectively. In 2018, which was the driest year, the difference in maize WUE between the high and low N treatments was only 1 kg/ha/mm, which corresponded with low actual to potential transpiration ratios (). This indicates higher sensitivity of maize to water stress compared to the other crops. The results of lablab indicate a positive impact of N fertilization on WUE only under water‐limited conditions.
期刊介绍:
Vadose Zone Journal is a unique publication outlet for interdisciplinary research and assessment of the vadose zone, the portion of the Critical Zone that comprises the Earth’s critical living surface down to groundwater. It is a peer-reviewed, international journal publishing reviews, original research, and special sections across a wide range of disciplines. Vadose Zone Journal reports fundamental and applied research from disciplinary and multidisciplinary investigations, including assessment and policy analyses, of the mostly unsaturated zone between the soil surface and the groundwater table. The goal is to disseminate information to facilitate science-based decision-making and sustainable management of the vadose zone. Examples of topic areas suitable for VZJ are variably saturated fluid flow, heat and solute transport in granular and fractured media, flow processes in the capillary fringe at or near the water table, water table management, regional and global climate change impacts on the vadose zone, carbon sequestration, design and performance of waste disposal facilities, long-term stewardship of contaminated sites in the vadose zone, biogeochemical transformation processes, microbial processes in shallow and deep formations, bioremediation, and the fate and transport of radionuclides, inorganic and organic chemicals, colloids, viruses, and microorganisms. Articles in VZJ also address yet-to-be-resolved issues, such as how to quantify heterogeneity of subsurface processes and properties, and how to couple physical, chemical, and biological processes across a range of spatial scales from the molecular to the global.