芬斯勒元可变性和测地不变性

IF 0.6 4区 数学 Q3 MATHEMATICS
Ioan Bucataru, Oana Constantinescu
{"title":"芬斯勒元可变性和测地不变性","authors":"Ioan Bucataru, Oana Constantinescu","doi":"10.1142/s0129167x24500162","DOIUrl":null,"url":null,"abstract":"<p>We demonstrate that various metrizability problems for Finsler sprays can be reformulated in terms of the geodesic invariance of two tensors, namely the metric and angular tensors. We show that a spray <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mi>S</mi></math></span><span></span> is the geodesic spray of some Finsler metric if and only if its metric tensor is geodesically invariant. Moreover, we establish that gyroscopic sprays constitute the largest class of sprays characterized by a geodesic-invariant angular metric. Scalar functions associated with these geodesically invariant tensors will also be invariant, thereby providing first integrals for the given spray.</p>","PeriodicalId":54951,"journal":{"name":"International Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Finsler metrizabilities and geodesic invariance\",\"authors\":\"Ioan Bucataru, Oana Constantinescu\",\"doi\":\"10.1142/s0129167x24500162\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We demonstrate that various metrizability problems for Finsler sprays can be reformulated in terms of the geodesic invariance of two tensors, namely the metric and angular tensors. We show that a spray <span><math altimg=\\\"eq-00001.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>S</mi></math></span><span></span> is the geodesic spray of some Finsler metric if and only if its metric tensor is geodesically invariant. Moreover, we establish that gyroscopic sprays constitute the largest class of sprays characterized by a geodesic-invariant angular metric. Scalar functions associated with these geodesically invariant tensors will also be invariant, thereby providing first integrals for the given spray.</p>\",\"PeriodicalId\":54951,\"journal\":{\"name\":\"International Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s0129167x24500162\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0129167x24500162","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们证明,可以用两个张量(即度量张量和角度张量)的大地不变性来重新表述芬斯勒喷雾的各种可元性问题。我们证明,当且仅当一个喷雾 S 的度量张量具有大地不变性时,它就是某个 Finsler 度量的大地喷雾。此外,我们还确定陀螺喷雾构成了以大地不变角度量为特征的最大一类喷雾。与这些大地不变张量相关的标量函数也将是不变的,从而为给定的喷雾提供第一积分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Finsler metrizabilities and geodesic invariance

We demonstrate that various metrizability problems for Finsler sprays can be reformulated in terms of the geodesic invariance of two tensors, namely the metric and angular tensors. We show that a spray S is the geodesic spray of some Finsler metric if and only if its metric tensor is geodesically invariant. Moreover, we establish that gyroscopic sprays constitute the largest class of sprays characterized by a geodesic-invariant angular metric. Scalar functions associated with these geodesically invariant tensors will also be invariant, thereby providing first integrals for the given spray.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
82
审稿时长
12 months
期刊介绍: The International Journal of Mathematics publishes original papers in mathematics in general, but giving a preference to those in the areas of mathematics represented by the editorial board. The journal has been published monthly except in June and December to bring out new results without delay. Occasionally, expository papers of exceptional value may also be published. The first issue appeared in March 1990.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信