{"title":"复杂索波列夫空间中函数的勒贝格点","authors":"Gabriel Vigny, Duc-Viet Vu","doi":"10.1142/s0129167x24500149","DOIUrl":null,"url":null,"abstract":"<p>Let <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mi>φ</mi></math></span><span></span> be a function in the complex Sobolev space <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>W</mi></mrow><mrow><mo stretchy=\"false\">∗</mo></mrow></msup><mo stretchy=\"false\">(</mo><mi>U</mi><mo stretchy=\"false\">)</mo></math></span><span></span>, where <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>U</mi></math></span><span></span> is an open subset in <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>ℂ</mi></mrow><mrow><mi>k</mi></mrow></msup></math></span><span></span>. We show that the complement of the set of Lebesgue points of <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mi>φ</mi></math></span><span></span> is pluripolar. The key ingredient in our approach is to show that <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><mo>|</mo><mi>φ</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>α</mi></mrow></msup></math></span><span></span> for <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><mi>α</mi><mo>∈</mo><mo stretchy=\"false\">[</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo stretchy=\"false\">)</mo></math></span><span></span> is locally bounded from above by a plurisubharmonic function.</p>","PeriodicalId":54951,"journal":{"name":"International Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lebesgue points of functions in the complex Sobolev space\",\"authors\":\"Gabriel Vigny, Duc-Viet Vu\",\"doi\":\"10.1142/s0129167x24500149\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span><math altimg=\\\"eq-00001.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>φ</mi></math></span><span></span> be a function in the complex Sobolev space <span><math altimg=\\\"eq-00002.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msup><mrow><mi>W</mi></mrow><mrow><mo stretchy=\\\"false\\\">∗</mo></mrow></msup><mo stretchy=\\\"false\\\">(</mo><mi>U</mi><mo stretchy=\\\"false\\\">)</mo></math></span><span></span>, where <span><math altimg=\\\"eq-00003.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>U</mi></math></span><span></span> is an open subset in <span><math altimg=\\\"eq-00004.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msup><mrow><mi>ℂ</mi></mrow><mrow><mi>k</mi></mrow></msup></math></span><span></span>. We show that the complement of the set of Lebesgue points of <span><math altimg=\\\"eq-00005.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>φ</mi></math></span><span></span> is pluripolar. The key ingredient in our approach is to show that <span><math altimg=\\\"eq-00006.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mo>|</mo><mi>φ</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>α</mi></mrow></msup></math></span><span></span> for <span><math altimg=\\\"eq-00007.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>α</mi><mo>∈</mo><mo stretchy=\\\"false\\\">[</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo stretchy=\\\"false\\\">)</mo></math></span><span></span> is locally bounded from above by a plurisubharmonic function.</p>\",\"PeriodicalId\":54951,\"journal\":{\"name\":\"International Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s0129167x24500149\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0129167x24500149","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Lebesgue points of functions in the complex Sobolev space
Let be a function in the complex Sobolev space , where is an open subset in . We show that the complement of the set of Lebesgue points of is pluripolar. The key ingredient in our approach is to show that for is locally bounded from above by a plurisubharmonic function.
期刊介绍:
The International Journal of Mathematics publishes original papers in mathematics in general, but giving a preference to those in the areas of mathematics represented by the editorial board. The journal has been published monthly except in June and December to bring out new results without delay. Occasionally, expository papers of exceptional value may also be published. The first issue appeared in March 1990.