复杂索波列夫空间中函数的勒贝格点

IF 0.6 4区 数学 Q3 MATHEMATICS
Gabriel Vigny, Duc-Viet Vu
{"title":"复杂索波列夫空间中函数的勒贝格点","authors":"Gabriel Vigny, Duc-Viet Vu","doi":"10.1142/s0129167x24500149","DOIUrl":null,"url":null,"abstract":"<p>Let <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mi>φ</mi></math></span><span></span> be a function in the complex Sobolev space <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>W</mi></mrow><mrow><mo stretchy=\"false\">∗</mo></mrow></msup><mo stretchy=\"false\">(</mo><mi>U</mi><mo stretchy=\"false\">)</mo></math></span><span></span>, where <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>U</mi></math></span><span></span> is an open subset in <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>ℂ</mi></mrow><mrow><mi>k</mi></mrow></msup></math></span><span></span>. We show that the complement of the set of Lebesgue points of <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mi>φ</mi></math></span><span></span> is pluripolar. The key ingredient in our approach is to show that <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><mo>|</mo><mi>φ</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>α</mi></mrow></msup></math></span><span></span> for <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><mi>α</mi><mo>∈</mo><mo stretchy=\"false\">[</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo stretchy=\"false\">)</mo></math></span><span></span> is locally bounded from above by a plurisubharmonic function.</p>","PeriodicalId":54951,"journal":{"name":"International Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lebesgue points of functions in the complex Sobolev space\",\"authors\":\"Gabriel Vigny, Duc-Viet Vu\",\"doi\":\"10.1142/s0129167x24500149\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span><math altimg=\\\"eq-00001.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>φ</mi></math></span><span></span> be a function in the complex Sobolev space <span><math altimg=\\\"eq-00002.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msup><mrow><mi>W</mi></mrow><mrow><mo stretchy=\\\"false\\\">∗</mo></mrow></msup><mo stretchy=\\\"false\\\">(</mo><mi>U</mi><mo stretchy=\\\"false\\\">)</mo></math></span><span></span>, where <span><math altimg=\\\"eq-00003.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>U</mi></math></span><span></span> is an open subset in <span><math altimg=\\\"eq-00004.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msup><mrow><mi>ℂ</mi></mrow><mrow><mi>k</mi></mrow></msup></math></span><span></span>. We show that the complement of the set of Lebesgue points of <span><math altimg=\\\"eq-00005.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>φ</mi></math></span><span></span> is pluripolar. The key ingredient in our approach is to show that <span><math altimg=\\\"eq-00006.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mo>|</mo><mi>φ</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>α</mi></mrow></msup></math></span><span></span> for <span><math altimg=\\\"eq-00007.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>α</mi><mo>∈</mo><mo stretchy=\\\"false\\\">[</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo stretchy=\\\"false\\\">)</mo></math></span><span></span> is locally bounded from above by a plurisubharmonic function.</p>\",\"PeriodicalId\":54951,\"journal\":{\"name\":\"International Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s0129167x24500149\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0129167x24500149","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设 φ 是复 Sobolev 空间 W∗(U)中的函数,其中 U 是ℂk 中的开放子集。我们证明φ 的 Lebesgue 点集的补集是多极的。我们的方法的关键在于证明α∈[1,2)的|φ|α从上而下局部受多次谐函数约束。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lebesgue points of functions in the complex Sobolev space

Let φ be a function in the complex Sobolev space W(U), where U is an open subset in k. We show that the complement of the set of Lebesgue points of φ is pluripolar. The key ingredient in our approach is to show that |φ|α for α[1,2) is locally bounded from above by a plurisubharmonic function.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
82
审稿时长
12 months
期刊介绍: The International Journal of Mathematics publishes original papers in mathematics in general, but giving a preference to those in the areas of mathematics represented by the editorial board. The journal has been published monthly except in June and December to bring out new results without delay. Occasionally, expository papers of exceptional value may also be published. The first issue appeared in March 1990.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信