{"title":"论次最大对称抛物几何的唯一性","authors":"Dennis The","doi":"10.1142/s0129167x24400019","DOIUrl":null,"url":null,"abstract":"<p>Among the (regular, normal) parabolic geometries of type <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mo stretchy=\"false\">(</mo><mi>G</mi><mo>,</mo><mi>P</mi><mo stretchy=\"false\">)</mo></math></span><span></span>, there is a locally unique maximally symmetric structure and it has the symmetry dimension <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mstyle><mtext mathvariant=\"normal\">dim</mtext></mstyle><mo stretchy=\"false\">(</mo><mi>G</mi><mo stretchy=\"false\">)</mo></math></span><span></span>. The symmetry gap problem concerns the determination of the next realizable (submaximal) symmetry dimension. When <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>G</mi></math></span><span></span> is a complex or split-real simple Lie group of rank at least three or when <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mo stretchy=\"false\">(</mo><mi>G</mi><mo>,</mo><mi>P</mi><mo stretchy=\"false\">)</mo><mo>=</mo><mo stretchy=\"false\">(</mo><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>2</mn></mrow></msub><mo stretchy=\"false\">)</mo></math></span><span></span>, we establish a local uniqueness result for submaximally symmetric structures of type <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mo stretchy=\"false\">(</mo><mi>G</mi><mo>,</mo><mi>P</mi><mo stretchy=\"false\">)</mo></math></span><span></span>.</p>","PeriodicalId":54951,"journal":{"name":"International Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On uniqueness of submaximally symmetric parabolic geometries\",\"authors\":\"Dennis The\",\"doi\":\"10.1142/s0129167x24400019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Among the (regular, normal) parabolic geometries of type <span><math altimg=\\\"eq-00001.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mo stretchy=\\\"false\\\">(</mo><mi>G</mi><mo>,</mo><mi>P</mi><mo stretchy=\\\"false\\\">)</mo></math></span><span></span>, there is a locally unique maximally symmetric structure and it has the symmetry dimension <span><math altimg=\\\"eq-00002.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mstyle><mtext mathvariant=\\\"normal\\\">dim</mtext></mstyle><mo stretchy=\\\"false\\\">(</mo><mi>G</mi><mo stretchy=\\\"false\\\">)</mo></math></span><span></span>. The symmetry gap problem concerns the determination of the next realizable (submaximal) symmetry dimension. When <span><math altimg=\\\"eq-00003.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>G</mi></math></span><span></span> is a complex or split-real simple Lie group of rank at least three or when <span><math altimg=\\\"eq-00004.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mo stretchy=\\\"false\\\">(</mo><mi>G</mi><mo>,</mo><mi>P</mi><mo stretchy=\\\"false\\\">)</mo><mo>=</mo><mo stretchy=\\\"false\\\">(</mo><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>2</mn></mrow></msub><mo stretchy=\\\"false\\\">)</mo></math></span><span></span>, we establish a local uniqueness result for submaximally symmetric structures of type <span><math altimg=\\\"eq-00005.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mo stretchy=\\\"false\\\">(</mo><mi>G</mi><mo>,</mo><mi>P</mi><mo stretchy=\\\"false\\\">)</mo></math></span><span></span>.</p>\",\"PeriodicalId\":54951,\"journal\":{\"name\":\"International Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s0129167x24400019\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0129167x24400019","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
在 (G,P) 类型的(正则、法向)抛物面几何图形中,存在一个局部唯一的最大对称结构,其对称维数为 dim(G)。对称性差距问题涉及下一个可实现的(次最大)对称维度的确定。当 G 是秩至少为三的复或分实简列支群时,或者当 (G,P)=(G2,P2) 时,我们为 (G,P) 类型的次最大对称结构建立了一个局部唯一性结果。
On uniqueness of submaximally symmetric parabolic geometries
Among the (regular, normal) parabolic geometries of type , there is a locally unique maximally symmetric structure and it has the symmetry dimension . The symmetry gap problem concerns the determination of the next realizable (submaximal) symmetry dimension. When is a complex or split-real simple Lie group of rank at least three or when , we establish a local uniqueness result for submaximally symmetric structures of type .
期刊介绍:
The International Journal of Mathematics publishes original papers in mathematics in general, but giving a preference to those in the areas of mathematics represented by the editorial board. The journal has been published monthly except in June and December to bring out new results without delay. Occasionally, expository papers of exceptional value may also be published. The first issue appeared in March 1990.