反褶(P,m)-反褶函数的多参数反褶-反褶不等式

Fractals Pub Date : 2024-01-27 DOI:10.1142/s0218348x24500257
XIAOMAN YUAN, HÜSEYIN BUDAK, TINGSONG DU
{"title":"反褶(P,m)-反褶函数的多参数反褶-反褶不等式","authors":"XIAOMAN YUAN, HÜSEYIN BUDAK, TINGSONG DU","doi":"10.1142/s0218348x24500257","DOIUrl":null,"url":null,"abstract":"<p>Local fractional calculus theory and parameterized method have greatly assisted in the advancement of the field of inequalities. To continue its enrichment, this study investigates the multi-parameter fractal–fractional integral inequalities containing the fractal <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mo stretchy=\"false\">(</mo><mi>P</mi><mo>,</mo><mi>m</mi><mo stretchy=\"false\">)</mo></math></span><span></span>-convex functions. Initially, we formulate the new conception of the fractal <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mo stretchy=\"false\">(</mo><mi>P</mi><mo>,</mo><mi>m</mi><mo stretchy=\"false\">)</mo></math></span><span></span>-convex functions and work on a variety of properties. Through the assistance of the fractal–fractional integrals, the <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mn>2</mn><mi>ℓ</mi></math></span><span></span>-fractal identity with multiple parameters is established, and from that, integral inequalities are inferred regarding twice fractal differentiable functions which are fractal <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><mo stretchy=\"false\">(</mo><mi>P</mi><mo>,</mo><mi>m</mi><mo stretchy=\"false\">)</mo></math></span><span></span>-convex. Furthermore, a few typical and novel outcomes are discussed and visualized for specific parameter values, separately. It concludes with some applications in respect of the special means, the quadrature formulas and random variable moments, respectively.</p>","PeriodicalId":501262,"journal":{"name":"Fractals","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"THE MULTI-PARAMETER FRACTAL–FRACTIONAL INEQUALITIES FOR FRACTAL (P,m)-CONVEX FUNCTIONS\",\"authors\":\"XIAOMAN YUAN, HÜSEYIN BUDAK, TINGSONG DU\",\"doi\":\"10.1142/s0218348x24500257\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Local fractional calculus theory and parameterized method have greatly assisted in the advancement of the field of inequalities. To continue its enrichment, this study investigates the multi-parameter fractal–fractional integral inequalities containing the fractal <span><math altimg=\\\"eq-00003.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mo stretchy=\\\"false\\\">(</mo><mi>P</mi><mo>,</mo><mi>m</mi><mo stretchy=\\\"false\\\">)</mo></math></span><span></span>-convex functions. Initially, we formulate the new conception of the fractal <span><math altimg=\\\"eq-00004.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mo stretchy=\\\"false\\\">(</mo><mi>P</mi><mo>,</mo><mi>m</mi><mo stretchy=\\\"false\\\">)</mo></math></span><span></span>-convex functions and work on a variety of properties. Through the assistance of the fractal–fractional integrals, the <span><math altimg=\\\"eq-00005.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mn>2</mn><mi>ℓ</mi></math></span><span></span>-fractal identity with multiple parameters is established, and from that, integral inequalities are inferred regarding twice fractal differentiable functions which are fractal <span><math altimg=\\\"eq-00006.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mo stretchy=\\\"false\\\">(</mo><mi>P</mi><mo>,</mo><mi>m</mi><mo stretchy=\\\"false\\\">)</mo></math></span><span></span>-convex. Furthermore, a few typical and novel outcomes are discussed and visualized for specific parameter values, separately. It concludes with some applications in respect of the special means, the quadrature formulas and random variable moments, respectively.</p>\",\"PeriodicalId\":501262,\"journal\":{\"name\":\"Fractals\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fractals\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218348x24500257\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218348x24500257","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

局部分形微积分理论和参数化方法极大地推动了不等式领域的发展。为了继续丰富其内容,本研究探讨了包含分形(P,m)凸函数的多参数分形-分形积分不等式。首先,我们提出了分形(P,m)凸函数的新概念,并对其各种性质进行了研究。通过分形-分形积分的帮助,建立了多参数的 2ℓ 分形同一性,并由此推断出分形 (P,m) 凸的两次分形可微分函数的积分不等式。此外,还讨论了一些典型和新颖的结果,并分别对特定参数值进行了可视化。最后,分别介绍了特殊手段、二次公式和随机变量矩方面的一些应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
THE MULTI-PARAMETER FRACTAL–FRACTIONAL INEQUALITIES FOR FRACTAL (P,m)-CONVEX FUNCTIONS

Local fractional calculus theory and parameterized method have greatly assisted in the advancement of the field of inequalities. To continue its enrichment, this study investigates the multi-parameter fractal–fractional integral inequalities containing the fractal (P,m)-convex functions. Initially, we formulate the new conception of the fractal (P,m)-convex functions and work on a variety of properties. Through the assistance of the fractal–fractional integrals, the 2-fractal identity with multiple parameters is established, and from that, integral inequalities are inferred regarding twice fractal differentiable functions which are fractal (P,m)-convex. Furthermore, a few typical and novel outcomes are discussed and visualized for specific parameter values, separately. It concludes with some applications in respect of the special means, the quadrature formulas and random variable moments, respectively.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信