{"title":"关于两个连续函数之和的 k 维数及其应用的研究","authors":"Y. X. CAO, N. LIU, Y. S. LIANG","doi":"10.1142/s0218348x24500300","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we have done some research studies on the fractal dimension of the sum of two continuous functions with different <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>K</mi></math></span><span></span>-dimensions and approximation of <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mi>s</mi></math></span><span></span>-dimensional fractal functions. We first investigate the <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mi>K</mi></math></span><span></span>-dimension of the linear combination of fractal function whose <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><mi>K</mi></math></span><span></span>-dimension is <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><mi>s</mi></math></span><span></span> and the function satisfying Lipschitz condition is still <span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><mi>s</mi></math></span><span></span>-dimensional. Then, based on the research of fractal term and the Weierstrass approximation theorem, an approximation of the <span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><mi>s</mi></math></span><span></span>-dimensional continuous function is given, which is composed of finite triangular series and partial Weierstrass function. In addition, some preliminary results on the approximation of one-dimensional and two-dimensional fractal continuous functions have been given.</p>","PeriodicalId":501262,"journal":{"name":"Fractals","volume":"149 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"RESEARCH ON THE K-DIMENSION OF THE SUM OF TWO CONTINUOUS FUNCTIONS AND ITS APPLICATION\",\"authors\":\"Y. X. CAO, N. LIU, Y. S. LIANG\",\"doi\":\"10.1142/s0218348x24500300\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we have done some research studies on the fractal dimension of the sum of two continuous functions with different <span><math altimg=\\\"eq-00003.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>K</mi></math></span><span></span>-dimensions and approximation of <span><math altimg=\\\"eq-00004.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>s</mi></math></span><span></span>-dimensional fractal functions. We first investigate the <span><math altimg=\\\"eq-00005.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>K</mi></math></span><span></span>-dimension of the linear combination of fractal function whose <span><math altimg=\\\"eq-00006.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>K</mi></math></span><span></span>-dimension is <span><math altimg=\\\"eq-00007.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>s</mi></math></span><span></span> and the function satisfying Lipschitz condition is still <span><math altimg=\\\"eq-00008.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>s</mi></math></span><span></span>-dimensional. Then, based on the research of fractal term and the Weierstrass approximation theorem, an approximation of the <span><math altimg=\\\"eq-00009.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>s</mi></math></span><span></span>-dimensional continuous function is given, which is composed of finite triangular series and partial Weierstrass function. In addition, some preliminary results on the approximation of one-dimensional and two-dimensional fractal continuous functions have been given.</p>\",\"PeriodicalId\":501262,\"journal\":{\"name\":\"Fractals\",\"volume\":\"149 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fractals\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218348x24500300\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218348x24500300","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
本文对具有不同 K 维的两个连续函数之和的分形维数以及 s 维分形函数的近似进行了一些研究。我们首先研究了 K 维数为 s 且满足 Lipschitz 条件的函数仍为 s 维的分形函数线性组合的 K 维数。然后,基于分形项和魏尔斯特拉斯近似定理的研究,给出了由有限三角形级数和部分魏尔斯特拉斯函数组成的 s 维连续函数的近似值。此外,还给出了一维和二维分形连续函数近似的一些初步结果。
RESEARCH ON THE K-DIMENSION OF THE SUM OF TWO CONTINUOUS FUNCTIONS AND ITS APPLICATION
In this paper, we have done some research studies on the fractal dimension of the sum of two continuous functions with different -dimensions and approximation of -dimensional fractal functions. We first investigate the -dimension of the linear combination of fractal function whose -dimension is and the function satisfying Lipschitz condition is still -dimensional. Then, based on the research of fractal term and the Weierstrass approximation theorem, an approximation of the -dimensional continuous function is given, which is composed of finite triangular series and partial Weierstrass function. In addition, some preliminary results on the approximation of one-dimensional and two-dimensional fractal continuous functions have been given.