关于两个连续函数之和的 k 维数及其应用的研究

Fractals Pub Date : 2024-01-27 DOI:10.1142/s0218348x24500300
Y. X. CAO, N. LIU, Y. S. LIANG
{"title":"关于两个连续函数之和的 k 维数及其应用的研究","authors":"Y. X. CAO, N. LIU, Y. S. LIANG","doi":"10.1142/s0218348x24500300","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we have done some research studies on the fractal dimension of the sum of two continuous functions with different <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>K</mi></math></span><span></span>-dimensions and approximation of <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mi>s</mi></math></span><span></span>-dimensional fractal functions. We first investigate the <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mi>K</mi></math></span><span></span>-dimension of the linear combination of fractal function whose <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><mi>K</mi></math></span><span></span>-dimension is <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><mi>s</mi></math></span><span></span> and the function satisfying Lipschitz condition is still <span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><mi>s</mi></math></span><span></span>-dimensional. Then, based on the research of fractal term and the Weierstrass approximation theorem, an approximation of the <span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><mi>s</mi></math></span><span></span>-dimensional continuous function is given, which is composed of finite triangular series and partial Weierstrass function. In addition, some preliminary results on the approximation of one-dimensional and two-dimensional fractal continuous functions have been given.</p>","PeriodicalId":501262,"journal":{"name":"Fractals","volume":"149 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"RESEARCH ON THE K-DIMENSION OF THE SUM OF TWO CONTINUOUS FUNCTIONS AND ITS APPLICATION\",\"authors\":\"Y. X. CAO, N. LIU, Y. S. LIANG\",\"doi\":\"10.1142/s0218348x24500300\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we have done some research studies on the fractal dimension of the sum of two continuous functions with different <span><math altimg=\\\"eq-00003.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>K</mi></math></span><span></span>-dimensions and approximation of <span><math altimg=\\\"eq-00004.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>s</mi></math></span><span></span>-dimensional fractal functions. We first investigate the <span><math altimg=\\\"eq-00005.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>K</mi></math></span><span></span>-dimension of the linear combination of fractal function whose <span><math altimg=\\\"eq-00006.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>K</mi></math></span><span></span>-dimension is <span><math altimg=\\\"eq-00007.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>s</mi></math></span><span></span> and the function satisfying Lipschitz condition is still <span><math altimg=\\\"eq-00008.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>s</mi></math></span><span></span>-dimensional. Then, based on the research of fractal term and the Weierstrass approximation theorem, an approximation of the <span><math altimg=\\\"eq-00009.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>s</mi></math></span><span></span>-dimensional continuous function is given, which is composed of finite triangular series and partial Weierstrass function. In addition, some preliminary results on the approximation of one-dimensional and two-dimensional fractal continuous functions have been given.</p>\",\"PeriodicalId\":501262,\"journal\":{\"name\":\"Fractals\",\"volume\":\"149 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fractals\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218348x24500300\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218348x24500300","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文对具有不同 K 维的两个连续函数之和的分形维数以及 s 维分形函数的近似进行了一些研究。我们首先研究了 K 维数为 s 且满足 Lipschitz 条件的函数仍为 s 维的分形函数线性组合的 K 维数。然后,基于分形项和魏尔斯特拉斯近似定理的研究,给出了由有限三角形级数和部分魏尔斯特拉斯函数组成的 s 维连续函数的近似值。此外,还给出了一维和二维分形连续函数近似的一些初步结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
RESEARCH ON THE K-DIMENSION OF THE SUM OF TWO CONTINUOUS FUNCTIONS AND ITS APPLICATION

In this paper, we have done some research studies on the fractal dimension of the sum of two continuous functions with different K-dimensions and approximation of s-dimensional fractal functions. We first investigate the K-dimension of the linear combination of fractal function whose K-dimension is s and the function satisfying Lipschitz condition is still s-dimensional. Then, based on the research of fractal term and the Weierstrass approximation theorem, an approximation of the s-dimensional continuous function is given, which is composed of finite triangular series and partial Weierstrass function. In addition, some preliminary results on the approximation of one-dimensional and two-dimensional fractal continuous functions have been given.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信