具有三个自由度的哈密顿系统中的 3D 生成曲面 - II

IF 1.9 4区 数学 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Matthaios Katsanikas, Stephen Wiggins
{"title":"具有三个自由度的哈密顿系统中的 3D 生成曲面 - II","authors":"Matthaios Katsanikas, Stephen Wiggins","doi":"10.1142/s0218127424300052","DOIUrl":null,"url":null,"abstract":"<p>Our paper is a continuation of a previous work referenced as [Katsanikas &amp; Wiggins, 2024b]. In this new paper, we present a second method for computing three-dimensional generating surfaces in Hamiltonian systems with three degrees of freedom. These 3D generating surfaces are distinct from the Normally Hyperbolic Invariant Manifold (NHIM) and have the unique property of producing dividing surfaces with no-recrossing characteristics, as explained in our previous work [Katsanikas &amp; Wiggins, 2024b]. This second method for computing 3D generating surfaces is valuable, especially in cases where the first method is unable to achieve the desired results. This research aims to provide alternative techniques and solutions for addressing specific challenges in Hamiltonian systems with three degrees of freedom and improving the accuracy and reliability of generating surfaces. This research may find applications in the broader field of dynamical systems and attract the attention of researchers and scholars interested in these areas.</p>","PeriodicalId":50337,"journal":{"name":"International Journal of Bifurcation and Chaos","volume":"25 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"3D Generating Surfaces in Hamiltonian Systems with Three Degrees of Freedom – II\",\"authors\":\"Matthaios Katsanikas, Stephen Wiggins\",\"doi\":\"10.1142/s0218127424300052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Our paper is a continuation of a previous work referenced as [Katsanikas &amp; Wiggins, 2024b]. In this new paper, we present a second method for computing three-dimensional generating surfaces in Hamiltonian systems with three degrees of freedom. These 3D generating surfaces are distinct from the Normally Hyperbolic Invariant Manifold (NHIM) and have the unique property of producing dividing surfaces with no-recrossing characteristics, as explained in our previous work [Katsanikas &amp; Wiggins, 2024b]. This second method for computing 3D generating surfaces is valuable, especially in cases where the first method is unable to achieve the desired results. This research aims to provide alternative techniques and solutions for addressing specific challenges in Hamiltonian systems with three degrees of freedom and improving the accuracy and reliability of generating surfaces. This research may find applications in the broader field of dynamical systems and attract the attention of researchers and scholars interested in these areas.</p>\",\"PeriodicalId\":50337,\"journal\":{\"name\":\"International Journal of Bifurcation and Chaos\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Bifurcation and Chaos\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218127424300052\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Bifurcation and Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0218127424300052","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

我们的论文是之前参考文献[Katsanikas & Wiggins, 2024b]的继续。在这篇新论文中,我们提出了计算具有三个自由度的哈密顿系统中三维生成面的第二种方法。这些三维生成面有别于常双曲不变曲面(NHIM),具有生成无交叉特征的分割曲面的独特性质,这在我们之前的工作[Katsanikas & Wiggins, 2024b]中已有解释。计算三维生成曲面的第二种方法非常有价值,尤其是在第一种方法无法实现预期结果的情况下。本研究旨在提供替代技术和解决方案,以应对具有三个自由度的哈密顿系统中的特定挑战,并提高生成曲面的精度和可靠性。这项研究可能会应用于更广泛的动力系统领域,并吸引对这些领域感兴趣的研究人员和学者的关注。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
3D Generating Surfaces in Hamiltonian Systems with Three Degrees of Freedom – II

Our paper is a continuation of a previous work referenced as [Katsanikas & Wiggins, 2024b]. In this new paper, we present a second method for computing three-dimensional generating surfaces in Hamiltonian systems with three degrees of freedom. These 3D generating surfaces are distinct from the Normally Hyperbolic Invariant Manifold (NHIM) and have the unique property of producing dividing surfaces with no-recrossing characteristics, as explained in our previous work [Katsanikas & Wiggins, 2024b]. This second method for computing 3D generating surfaces is valuable, especially in cases where the first method is unable to achieve the desired results. This research aims to provide alternative techniques and solutions for addressing specific challenges in Hamiltonian systems with three degrees of freedom and improving the accuracy and reliability of generating surfaces. This research may find applications in the broader field of dynamical systems and attract the attention of researchers and scholars interested in these areas.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Bifurcation and Chaos
International Journal of Bifurcation and Chaos 数学-数学跨学科应用
CiteScore
4.10
自引率
13.60%
发文量
237
审稿时长
2-4 weeks
期刊介绍: The International Journal of Bifurcation and Chaos is widely regarded as a leading journal in the exciting fields of chaos theory and nonlinear science. Represented by an international editorial board comprising top researchers from a wide variety of disciplines, it is setting high standards in scientific and production quality. The journal has been reputedly acclaimed by the scientific community around the world, and has featured many important papers by leading researchers from various areas of applied sciences and engineering. The discipline of chaos theory has created a universal paradigm, a scientific parlance, and a mathematical tool for grappling with complex dynamical phenomena. In every field of applied sciences (astronomy, atmospheric sciences, biology, chemistry, economics, geophysics, life and medical sciences, physics, social sciences, ecology, etc.) and engineering (aerospace, chemical, electronic, civil, computer, information, mechanical, software, telecommunication, etc.), the local and global manifestations of chaos and bifurcation have burst forth in an unprecedented universality, linking scientists heretofore unfamiliar with one another''s fields, and offering an opportunity to reshape our grasp of reality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信