{"title":"有延迟网络的稳定性、分岔和动态性","authors":"Xu Xu, Jianming Liu","doi":"10.1142/s0218127424500251","DOIUrl":null,"url":null,"abstract":"<p>In real-world networks, due to complex topological structures and uncertainties such as time delays, uncontrolled systems may generate instability and complexity, thereby degrading network performance. This paper provides a detailed analysis of the stability, Hopf bifurcation, and complex dynamics of a networked system under delayed feedback control. Based on the linear stability method and Hopf bifurcation theorem, the stability of the equilibrium of the error system and the existence of Hopf bifurcation are studied. The stability of periodic solutions bifurcating from the trivial equilibrium is analyzed using normal form theory and central manifold theorem. Special focus is on the effects of the network topology and time delays on the stability and Hopf bifurcation. The theoretical results are also extended to the complex networks with asymmetric adjacent matrices. In addition, the controlled model exhibits complicated dynamical behavior via three types of codimension two bifurcations and period-doubling bifurcations that eventually lead to chaos. Numerical experiments have validated the theoretical results and indicated that delayed feedback control can effectively generate or annihilate the complicated behavior of complex networks.</p>","PeriodicalId":50337,"journal":{"name":"International Journal of Bifurcation and Chaos","volume":"16 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stability, Bifurcation and Dynamics in a Network with Delays\",\"authors\":\"Xu Xu, Jianming Liu\",\"doi\":\"10.1142/s0218127424500251\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In real-world networks, due to complex topological structures and uncertainties such as time delays, uncontrolled systems may generate instability and complexity, thereby degrading network performance. This paper provides a detailed analysis of the stability, Hopf bifurcation, and complex dynamics of a networked system under delayed feedback control. Based on the linear stability method and Hopf bifurcation theorem, the stability of the equilibrium of the error system and the existence of Hopf bifurcation are studied. The stability of periodic solutions bifurcating from the trivial equilibrium is analyzed using normal form theory and central manifold theorem. Special focus is on the effects of the network topology and time delays on the stability and Hopf bifurcation. The theoretical results are also extended to the complex networks with asymmetric adjacent matrices. In addition, the controlled model exhibits complicated dynamical behavior via three types of codimension two bifurcations and period-doubling bifurcations that eventually lead to chaos. Numerical experiments have validated the theoretical results and indicated that delayed feedback control can effectively generate or annihilate the complicated behavior of complex networks.</p>\",\"PeriodicalId\":50337,\"journal\":{\"name\":\"International Journal of Bifurcation and Chaos\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Bifurcation and Chaos\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218127424500251\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Bifurcation and Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0218127424500251","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Stability, Bifurcation and Dynamics in a Network with Delays
In real-world networks, due to complex topological structures and uncertainties such as time delays, uncontrolled systems may generate instability and complexity, thereby degrading network performance. This paper provides a detailed analysis of the stability, Hopf bifurcation, and complex dynamics of a networked system under delayed feedback control. Based on the linear stability method and Hopf bifurcation theorem, the stability of the equilibrium of the error system and the existence of Hopf bifurcation are studied. The stability of periodic solutions bifurcating from the trivial equilibrium is analyzed using normal form theory and central manifold theorem. Special focus is on the effects of the network topology and time delays on the stability and Hopf bifurcation. The theoretical results are also extended to the complex networks with asymmetric adjacent matrices. In addition, the controlled model exhibits complicated dynamical behavior via three types of codimension two bifurcations and period-doubling bifurcations that eventually lead to chaos. Numerical experiments have validated the theoretical results and indicated that delayed feedback control can effectively generate or annihilate the complicated behavior of complex networks.
期刊介绍:
The International Journal of Bifurcation and Chaos is widely regarded as a leading journal in the exciting fields of chaos theory and nonlinear science. Represented by an international editorial board comprising top researchers from a wide variety of disciplines, it is setting high standards in scientific and production quality. The journal has been reputedly acclaimed by the scientific community around the world, and has featured many important papers by leading researchers from various areas of applied sciences and engineering.
The discipline of chaos theory has created a universal paradigm, a scientific parlance, and a mathematical tool for grappling with complex dynamical phenomena. In every field of applied sciences (astronomy, atmospheric sciences, biology, chemistry, economics, geophysics, life and medical sciences, physics, social sciences, ecology, etc.) and engineering (aerospace, chemical, electronic, civil, computer, information, mechanical, software, telecommunication, etc.), the local and global manifestations of chaos and bifurcation have burst forth in an unprecedented universality, linking scientists heretofore unfamiliar with one another''s fields, and offering an opportunity to reshape our grasp of reality.