Munirah Aljuaid, M. A. Bakhit
求助PDF
{"title":"从加权谐波布洛赫空间到加权谐波齐格蒙空间的合成算子规范","authors":"Munirah Aljuaid, M. A. Bakhit","doi":"10.1155/2024/5581805","DOIUrl":null,"url":null,"abstract":"This article examines the norms of composition operators from the weighted harmonic Bloch space <span><svg height=\"16.0921pt\" style=\"vertical-align:-3.8339pt\" version=\"1.1\" viewbox=\"-0.0498162 -12.2582 23.549 16.0921\" width=\"23.549pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,12.35,-5.741)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,12.35,3.784)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,20.585,0)\"></path></g></svg><span></span><svg height=\"16.0921pt\" style=\"vertical-align:-3.8339pt\" version=\"1.1\" viewbox=\"25.678183800000003 -12.2582 22.001 16.0921\" width=\"22.001pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,25.728,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,30.226,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,40.098,0)\"></path></g></svg><span></span><svg height=\"16.0921pt\" style=\"vertical-align:-3.8339pt\" version=\"1.1\" viewbox=\"51.3101838 -12.2582 18.437 16.0921\" width=\"18.437pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,51.36,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,62.166,0)\"><use xlink:href=\"#g117-91\"></use></g></svg><span></span><svg height=\"16.0921pt\" style=\"vertical-align:-3.8339pt\" version=\"1.1\" viewbox=\"73.3791838 -12.2582 18.108 16.0921\" width=\"18.108pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,73.429,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,86.689,0)\"></path></g></svg></span> to the weighted harmonic Zygmund space <span><svg height=\"17.5066pt\" style=\"vertical-align:-4.091pt\" version=\"1.1\" viewbox=\"-0.0498162 -13.4156 23.315 17.5066\" width=\"23.315pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,12.116,-6.899)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,12.116,4.041)\"><use xlink:href=\"#g50-73\"></use></g><g transform=\"matrix(.013,0,0,-0.013,20.351,0)\"><use xlink:href=\"#g113-45\"></use></g></svg><span></span><svg height=\"17.5066pt\" style=\"vertical-align:-4.091pt\" version=\"1.1\" viewbox=\"25.4441838 -13.4156 22.001 17.5066\" width=\"22.001pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,25.494,0)\"><use xlink:href=\"#g113-41\"></use></g><g transform=\"matrix(.013,0,0,-0.013,29.992,0)\"><use xlink:href=\"#g113-49\"></use></g><g transform=\"matrix(.013,0,0,-0.013,39.864,0)\"><use xlink:href=\"#g117-91\"></use></g></svg><span></span><svg height=\"17.5066pt\" style=\"vertical-align:-4.091pt\" version=\"1.1\" viewbox=\"51.0771838 -13.4156 18.817 17.5066\" width=\"18.817pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,51.127,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,62.313,0)\"><use xlink:href=\"#g117-91\"></use></g></svg><span></span><span><svg height=\"17.5066pt\" style=\"vertical-align:-4.091pt\" version=\"1.1\" viewbox=\"73.5261838 -13.4156 18.105 17.5066\" width=\"18.105pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,73.576,0)\"><use xlink:href=\"#g113-30\"></use></g><g transform=\"matrix(.013,0,0,-0.013,86.836,0)\"><use xlink:href=\"#g113-42\"></use></g></svg>.</span></span> The critical norm is on the open unit disk. We first give necessary and sufficient conditions where the composition operator between <svg height=\"16.0921pt\" style=\"vertical-align:-3.8339pt\" version=\"1.1\" viewbox=\"-0.0498162 -12.2582 20.7306 16.0921\" width=\"20.7306pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g198-3\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,12.35,-5.741)\"><use xlink:href=\"#g50-233\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,12.35,3.784)\"><use xlink:href=\"#g50-73\"></use></g></svg> and <svg height=\"17.5066pt\" style=\"vertical-align:-4.091pt\" version=\"1.1\" viewbox=\"-0.0498162 -13.4156 20.4958 17.5066\" width=\"20.4958pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g198-27\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,12.116,-6.899)\"><use xlink:href=\"#g50-224\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,12.116,4.041)\"><use xlink:href=\"#g50-73\"></use></g></svg> is bounded. Secondly, we will study the compactness case of the composition operator between <svg height=\"16.0921pt\" style=\"vertical-align:-3.8339pt\" version=\"1.1\" viewbox=\"-0.0498162 -12.2582 20.7306 16.0921\" width=\"20.7306pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g198-3\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,12.35,-5.741)\"><use xlink:href=\"#g50-233\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,12.35,3.784)\"><use xlink:href=\"#g50-73\"></use></g></svg> and <span><svg height=\"17.5066pt\" style=\"vertical-align:-4.091pt\" version=\"1.1\" viewbox=\"-0.0498162 -13.4156 20.4958 17.5066\" width=\"20.4958pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g198-27\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,12.116,-6.899)\"><use xlink:href=\"#g50-224\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,12.116,4.041)\"><use xlink:href=\"#g50-73\"></use></g></svg>.</span> Finally, we will estimate the essential norms of the composition operator between <svg height=\"16.0921pt\" style=\"vertical-align:-3.8339pt\" version=\"1.1\" viewbox=\"-0.0498162 -12.2582 20.7306 16.0921\" width=\"20.7306pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g198-3\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,12.35,-5.741)\"><use xlink:href=\"#g50-233\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,12.35,3.784)\"><use xlink:href=\"#g50-73\"></use></g></svg> and <span><svg height=\"17.5066pt\" style=\"vertical-align:-4.091pt\" version=\"1.1\" viewbox=\"-0.0498162 -13.4156 20.4958 17.5066\" width=\"20.4958pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g198-27\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,12.116,-6.899)\"><use xlink:href=\"#g50-224\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,12.116,4.041)\"><use xlink:href=\"#g50-73\"></use></g></svg>.</span>","PeriodicalId":15840,"journal":{"name":"Journal of Function Spaces","volume":"69 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Norms of Composition Operators from Weighted Harmonic Bloch Spaces into Weighted Harmonic Zygmund Spaces\",\"authors\":\"Munirah Aljuaid, M. A. Bakhit\",\"doi\":\"10.1155/2024/5581805\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article examines the norms of composition operators from the weighted harmonic Bloch space <span><svg height=\\\"16.0921pt\\\" style=\\\"vertical-align:-3.8339pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -12.2582 23.549 16.0921\\\" width=\\\"23.549pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"></path></g><g transform=\\\"matrix(.0091,0,0,-0.0091,12.35,-5.741)\\\"></path></g><g transform=\\\"matrix(.0091,0,0,-0.0091,12.35,3.784)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,20.585,0)\\\"></path></g></svg><span></span><svg height=\\\"16.0921pt\\\" style=\\\"vertical-align:-3.8339pt\\\" version=\\\"1.1\\\" viewbox=\\\"25.678183800000003 -12.2582 22.001 16.0921\\\" width=\\\"22.001pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,25.728,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,30.226,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,40.098,0)\\\"></path></g></svg><span></span><svg height=\\\"16.0921pt\\\" style=\\\"vertical-align:-3.8339pt\\\" version=\\\"1.1\\\" viewbox=\\\"51.3101838 -12.2582 18.437 16.0921\\\" width=\\\"18.437pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,51.36,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,62.166,0)\\\"><use xlink:href=\\\"#g117-91\\\"></use></g></svg><span></span><svg height=\\\"16.0921pt\\\" style=\\\"vertical-align:-3.8339pt\\\" version=\\\"1.1\\\" viewbox=\\\"73.3791838 -12.2582 18.108 16.0921\\\" width=\\\"18.108pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,73.429,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,86.689,0)\\\"></path></g></svg></span> to the weighted harmonic Zygmund space <span><svg height=\\\"17.5066pt\\\" style=\\\"vertical-align:-4.091pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -13.4156 23.315 17.5066\\\" width=\\\"23.315pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"></path></g><g transform=\\\"matrix(.0091,0,0,-0.0091,12.116,-6.899)\\\"></path></g><g transform=\\\"matrix(.0091,0,0,-0.0091,12.116,4.041)\\\"><use xlink:href=\\\"#g50-73\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,20.351,0)\\\"><use xlink:href=\\\"#g113-45\\\"></use></g></svg><span></span><svg height=\\\"17.5066pt\\\" style=\\\"vertical-align:-4.091pt\\\" version=\\\"1.1\\\" viewbox=\\\"25.4441838 -13.4156 22.001 17.5066\\\" width=\\\"22.001pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,25.494,0)\\\"><use xlink:href=\\\"#g113-41\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,29.992,0)\\\"><use xlink:href=\\\"#g113-49\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,39.864,0)\\\"><use xlink:href=\\\"#g117-91\\\"></use></g></svg><span></span><svg height=\\\"17.5066pt\\\" style=\\\"vertical-align:-4.091pt\\\" version=\\\"1.1\\\" viewbox=\\\"51.0771838 -13.4156 18.817 17.5066\\\" width=\\\"18.817pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,51.127,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,62.313,0)\\\"><use xlink:href=\\\"#g117-91\\\"></use></g></svg><span></span><span><svg height=\\\"17.5066pt\\\" style=\\\"vertical-align:-4.091pt\\\" version=\\\"1.1\\\" viewbox=\\\"73.5261838 -13.4156 18.105 17.5066\\\" width=\\\"18.105pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,73.576,0)\\\"><use xlink:href=\\\"#g113-30\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,86.836,0)\\\"><use xlink:href=\\\"#g113-42\\\"></use></g></svg>.</span></span> The critical norm is on the open unit disk. We first give necessary and sufficient conditions where the composition operator between <svg height=\\\"16.0921pt\\\" style=\\\"vertical-align:-3.8339pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -12.2582 20.7306 16.0921\\\" width=\\\"20.7306pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g198-3\\\"></use></g><g transform=\\\"matrix(.0091,0,0,-0.0091,12.35,-5.741)\\\"><use xlink:href=\\\"#g50-233\\\"></use></g><g transform=\\\"matrix(.0091,0,0,-0.0091,12.35,3.784)\\\"><use xlink:href=\\\"#g50-73\\\"></use></g></svg> and <svg height=\\\"17.5066pt\\\" style=\\\"vertical-align:-4.091pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -13.4156 20.4958 17.5066\\\" width=\\\"20.4958pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g198-27\\\"></use></g><g transform=\\\"matrix(.0091,0,0,-0.0091,12.116,-6.899)\\\"><use xlink:href=\\\"#g50-224\\\"></use></g><g transform=\\\"matrix(.0091,0,0,-0.0091,12.116,4.041)\\\"><use xlink:href=\\\"#g50-73\\\"></use></g></svg> is bounded. Secondly, we will study the compactness case of the composition operator between <svg height=\\\"16.0921pt\\\" style=\\\"vertical-align:-3.8339pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -12.2582 20.7306 16.0921\\\" width=\\\"20.7306pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g198-3\\\"></use></g><g transform=\\\"matrix(.0091,0,0,-0.0091,12.35,-5.741)\\\"><use xlink:href=\\\"#g50-233\\\"></use></g><g transform=\\\"matrix(.0091,0,0,-0.0091,12.35,3.784)\\\"><use xlink:href=\\\"#g50-73\\\"></use></g></svg> and <span><svg height=\\\"17.5066pt\\\" style=\\\"vertical-align:-4.091pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -13.4156 20.4958 17.5066\\\" width=\\\"20.4958pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g198-27\\\"></use></g><g transform=\\\"matrix(.0091,0,0,-0.0091,12.116,-6.899)\\\"><use xlink:href=\\\"#g50-224\\\"></use></g><g transform=\\\"matrix(.0091,0,0,-0.0091,12.116,4.041)\\\"><use xlink:href=\\\"#g50-73\\\"></use></g></svg>.</span> Finally, we will estimate the essential norms of the composition operator between <svg height=\\\"16.0921pt\\\" style=\\\"vertical-align:-3.8339pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -12.2582 20.7306 16.0921\\\" width=\\\"20.7306pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g198-3\\\"></use></g><g transform=\\\"matrix(.0091,0,0,-0.0091,12.35,-5.741)\\\"><use xlink:href=\\\"#g50-233\\\"></use></g><g transform=\\\"matrix(.0091,0,0,-0.0091,12.35,3.784)\\\"><use xlink:href=\\\"#g50-73\\\"></use></g></svg> and <span><svg height=\\\"17.5066pt\\\" style=\\\"vertical-align:-4.091pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -13.4156 20.4958 17.5066\\\" width=\\\"20.4958pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g198-27\\\"></use></g><g transform=\\\"matrix(.0091,0,0,-0.0091,12.116,-6.899)\\\"><use xlink:href=\\\"#g50-224\\\"></use></g><g transform=\\\"matrix(.0091,0,0,-0.0091,12.116,4.041)\\\"><use xlink:href=\\\"#g50-73\\\"></use></g></svg>.</span>\",\"PeriodicalId\":15840,\"journal\":{\"name\":\"Journal of Function Spaces\",\"volume\":\"69 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Function Spaces\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1155/2024/5581805\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Function Spaces","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1155/2024/5581805","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
引用
批量引用