从加权谐波布洛赫空间到加权谐波齐格蒙空间的合成算子规范

IF 1.9 3区 数学 Q1 MATHEMATICS
Munirah Aljuaid, M. A. Bakhit
{"title":"从加权谐波布洛赫空间到加权谐波齐格蒙空间的合成算子规范","authors":"Munirah Aljuaid, M. A. Bakhit","doi":"10.1155/2024/5581805","DOIUrl":null,"url":null,"abstract":"This article examines the norms of composition operators from the weighted harmonic Bloch space <span><svg height=\"16.0921pt\" style=\"vertical-align:-3.8339pt\" version=\"1.1\" viewbox=\"-0.0498162 -12.2582 23.549 16.0921\" width=\"23.549pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,12.35,-5.741)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,12.35,3.784)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,20.585,0)\"></path></g></svg><span></span><svg height=\"16.0921pt\" style=\"vertical-align:-3.8339pt\" version=\"1.1\" viewbox=\"25.678183800000003 -12.2582 22.001 16.0921\" width=\"22.001pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,25.728,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,30.226,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,40.098,0)\"></path></g></svg><span></span><svg height=\"16.0921pt\" style=\"vertical-align:-3.8339pt\" version=\"1.1\" viewbox=\"51.3101838 -12.2582 18.437 16.0921\" width=\"18.437pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,51.36,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,62.166,0)\"><use xlink:href=\"#g117-91\"></use></g></svg><span></span><svg height=\"16.0921pt\" style=\"vertical-align:-3.8339pt\" version=\"1.1\" viewbox=\"73.3791838 -12.2582 18.108 16.0921\" width=\"18.108pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,73.429,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,86.689,0)\"></path></g></svg></span> to the weighted harmonic Zygmund space <span><svg height=\"17.5066pt\" style=\"vertical-align:-4.091pt\" version=\"1.1\" viewbox=\"-0.0498162 -13.4156 23.315 17.5066\" width=\"23.315pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,12.116,-6.899)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,12.116,4.041)\"><use xlink:href=\"#g50-73\"></use></g><g transform=\"matrix(.013,0,0,-0.013,20.351,0)\"><use xlink:href=\"#g113-45\"></use></g></svg><span></span><svg height=\"17.5066pt\" style=\"vertical-align:-4.091pt\" version=\"1.1\" viewbox=\"25.4441838 -13.4156 22.001 17.5066\" width=\"22.001pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,25.494,0)\"><use xlink:href=\"#g113-41\"></use></g><g transform=\"matrix(.013,0,0,-0.013,29.992,0)\"><use xlink:href=\"#g113-49\"></use></g><g transform=\"matrix(.013,0,0,-0.013,39.864,0)\"><use xlink:href=\"#g117-91\"></use></g></svg><span></span><svg height=\"17.5066pt\" style=\"vertical-align:-4.091pt\" version=\"1.1\" viewbox=\"51.0771838 -13.4156 18.817 17.5066\" width=\"18.817pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,51.127,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,62.313,0)\"><use xlink:href=\"#g117-91\"></use></g></svg><span></span><span><svg height=\"17.5066pt\" style=\"vertical-align:-4.091pt\" version=\"1.1\" viewbox=\"73.5261838 -13.4156 18.105 17.5066\" width=\"18.105pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,73.576,0)\"><use xlink:href=\"#g113-30\"></use></g><g transform=\"matrix(.013,0,0,-0.013,86.836,0)\"><use xlink:href=\"#g113-42\"></use></g></svg>.</span></span> The critical norm is on the open unit disk. We first give necessary and sufficient conditions where the composition operator between <svg height=\"16.0921pt\" style=\"vertical-align:-3.8339pt\" version=\"1.1\" viewbox=\"-0.0498162 -12.2582 20.7306 16.0921\" width=\"20.7306pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g198-3\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,12.35,-5.741)\"><use xlink:href=\"#g50-233\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,12.35,3.784)\"><use xlink:href=\"#g50-73\"></use></g></svg> and <svg height=\"17.5066pt\" style=\"vertical-align:-4.091pt\" version=\"1.1\" viewbox=\"-0.0498162 -13.4156 20.4958 17.5066\" width=\"20.4958pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g198-27\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,12.116,-6.899)\"><use xlink:href=\"#g50-224\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,12.116,4.041)\"><use xlink:href=\"#g50-73\"></use></g></svg> is bounded. Secondly, we will study the compactness case of the composition operator between <svg height=\"16.0921pt\" style=\"vertical-align:-3.8339pt\" version=\"1.1\" viewbox=\"-0.0498162 -12.2582 20.7306 16.0921\" width=\"20.7306pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g198-3\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,12.35,-5.741)\"><use xlink:href=\"#g50-233\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,12.35,3.784)\"><use xlink:href=\"#g50-73\"></use></g></svg> and <span><svg height=\"17.5066pt\" style=\"vertical-align:-4.091pt\" version=\"1.1\" viewbox=\"-0.0498162 -13.4156 20.4958 17.5066\" width=\"20.4958pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g198-27\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,12.116,-6.899)\"><use xlink:href=\"#g50-224\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,12.116,4.041)\"><use xlink:href=\"#g50-73\"></use></g></svg>.</span> Finally, we will estimate the essential norms of the composition operator between <svg height=\"16.0921pt\" style=\"vertical-align:-3.8339pt\" version=\"1.1\" viewbox=\"-0.0498162 -12.2582 20.7306 16.0921\" width=\"20.7306pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g198-3\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,12.35,-5.741)\"><use xlink:href=\"#g50-233\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,12.35,3.784)\"><use xlink:href=\"#g50-73\"></use></g></svg> and <span><svg height=\"17.5066pt\" style=\"vertical-align:-4.091pt\" version=\"1.1\" viewbox=\"-0.0498162 -13.4156 20.4958 17.5066\" width=\"20.4958pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g198-27\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,12.116,-6.899)\"><use xlink:href=\"#g50-224\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,12.116,4.041)\"><use xlink:href=\"#g50-73\"></use></g></svg>.</span>","PeriodicalId":15840,"journal":{"name":"Journal of Function Spaces","volume":"69 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Norms of Composition Operators from Weighted Harmonic Bloch Spaces into Weighted Harmonic Zygmund Spaces\",\"authors\":\"Munirah Aljuaid, M. A. Bakhit\",\"doi\":\"10.1155/2024/5581805\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article examines the norms of composition operators from the weighted harmonic Bloch space <span><svg height=\\\"16.0921pt\\\" style=\\\"vertical-align:-3.8339pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -12.2582 23.549 16.0921\\\" width=\\\"23.549pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"></path></g><g transform=\\\"matrix(.0091,0,0,-0.0091,12.35,-5.741)\\\"></path></g><g transform=\\\"matrix(.0091,0,0,-0.0091,12.35,3.784)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,20.585,0)\\\"></path></g></svg><span></span><svg height=\\\"16.0921pt\\\" style=\\\"vertical-align:-3.8339pt\\\" version=\\\"1.1\\\" viewbox=\\\"25.678183800000003 -12.2582 22.001 16.0921\\\" width=\\\"22.001pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,25.728,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,30.226,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,40.098,0)\\\"></path></g></svg><span></span><svg height=\\\"16.0921pt\\\" style=\\\"vertical-align:-3.8339pt\\\" version=\\\"1.1\\\" viewbox=\\\"51.3101838 -12.2582 18.437 16.0921\\\" width=\\\"18.437pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,51.36,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,62.166,0)\\\"><use xlink:href=\\\"#g117-91\\\"></use></g></svg><span></span><svg height=\\\"16.0921pt\\\" style=\\\"vertical-align:-3.8339pt\\\" version=\\\"1.1\\\" viewbox=\\\"73.3791838 -12.2582 18.108 16.0921\\\" width=\\\"18.108pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,73.429,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,86.689,0)\\\"></path></g></svg></span> to the weighted harmonic Zygmund space <span><svg height=\\\"17.5066pt\\\" style=\\\"vertical-align:-4.091pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -13.4156 23.315 17.5066\\\" width=\\\"23.315pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"></path></g><g transform=\\\"matrix(.0091,0,0,-0.0091,12.116,-6.899)\\\"></path></g><g transform=\\\"matrix(.0091,0,0,-0.0091,12.116,4.041)\\\"><use xlink:href=\\\"#g50-73\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,20.351,0)\\\"><use xlink:href=\\\"#g113-45\\\"></use></g></svg><span></span><svg height=\\\"17.5066pt\\\" style=\\\"vertical-align:-4.091pt\\\" version=\\\"1.1\\\" viewbox=\\\"25.4441838 -13.4156 22.001 17.5066\\\" width=\\\"22.001pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,25.494,0)\\\"><use xlink:href=\\\"#g113-41\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,29.992,0)\\\"><use xlink:href=\\\"#g113-49\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,39.864,0)\\\"><use xlink:href=\\\"#g117-91\\\"></use></g></svg><span></span><svg height=\\\"17.5066pt\\\" style=\\\"vertical-align:-4.091pt\\\" version=\\\"1.1\\\" viewbox=\\\"51.0771838 -13.4156 18.817 17.5066\\\" width=\\\"18.817pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,51.127,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,62.313,0)\\\"><use xlink:href=\\\"#g117-91\\\"></use></g></svg><span></span><span><svg height=\\\"17.5066pt\\\" style=\\\"vertical-align:-4.091pt\\\" version=\\\"1.1\\\" viewbox=\\\"73.5261838 -13.4156 18.105 17.5066\\\" width=\\\"18.105pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,73.576,0)\\\"><use xlink:href=\\\"#g113-30\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,86.836,0)\\\"><use xlink:href=\\\"#g113-42\\\"></use></g></svg>.</span></span> The critical norm is on the open unit disk. We first give necessary and sufficient conditions where the composition operator between <svg height=\\\"16.0921pt\\\" style=\\\"vertical-align:-3.8339pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -12.2582 20.7306 16.0921\\\" width=\\\"20.7306pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g198-3\\\"></use></g><g transform=\\\"matrix(.0091,0,0,-0.0091,12.35,-5.741)\\\"><use xlink:href=\\\"#g50-233\\\"></use></g><g transform=\\\"matrix(.0091,0,0,-0.0091,12.35,3.784)\\\"><use xlink:href=\\\"#g50-73\\\"></use></g></svg> and <svg height=\\\"17.5066pt\\\" style=\\\"vertical-align:-4.091pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -13.4156 20.4958 17.5066\\\" width=\\\"20.4958pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g198-27\\\"></use></g><g transform=\\\"matrix(.0091,0,0,-0.0091,12.116,-6.899)\\\"><use xlink:href=\\\"#g50-224\\\"></use></g><g transform=\\\"matrix(.0091,0,0,-0.0091,12.116,4.041)\\\"><use xlink:href=\\\"#g50-73\\\"></use></g></svg> is bounded. Secondly, we will study the compactness case of the composition operator between <svg height=\\\"16.0921pt\\\" style=\\\"vertical-align:-3.8339pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -12.2582 20.7306 16.0921\\\" width=\\\"20.7306pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g198-3\\\"></use></g><g transform=\\\"matrix(.0091,0,0,-0.0091,12.35,-5.741)\\\"><use xlink:href=\\\"#g50-233\\\"></use></g><g transform=\\\"matrix(.0091,0,0,-0.0091,12.35,3.784)\\\"><use xlink:href=\\\"#g50-73\\\"></use></g></svg> and <span><svg height=\\\"17.5066pt\\\" style=\\\"vertical-align:-4.091pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -13.4156 20.4958 17.5066\\\" width=\\\"20.4958pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g198-27\\\"></use></g><g transform=\\\"matrix(.0091,0,0,-0.0091,12.116,-6.899)\\\"><use xlink:href=\\\"#g50-224\\\"></use></g><g transform=\\\"matrix(.0091,0,0,-0.0091,12.116,4.041)\\\"><use xlink:href=\\\"#g50-73\\\"></use></g></svg>.</span> Finally, we will estimate the essential norms of the composition operator between <svg height=\\\"16.0921pt\\\" style=\\\"vertical-align:-3.8339pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -12.2582 20.7306 16.0921\\\" width=\\\"20.7306pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g198-3\\\"></use></g><g transform=\\\"matrix(.0091,0,0,-0.0091,12.35,-5.741)\\\"><use xlink:href=\\\"#g50-233\\\"></use></g><g transform=\\\"matrix(.0091,0,0,-0.0091,12.35,3.784)\\\"><use xlink:href=\\\"#g50-73\\\"></use></g></svg> and <span><svg height=\\\"17.5066pt\\\" style=\\\"vertical-align:-4.091pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -13.4156 20.4958 17.5066\\\" width=\\\"20.4958pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g198-27\\\"></use></g><g transform=\\\"matrix(.0091,0,0,-0.0091,12.116,-6.899)\\\"><use xlink:href=\\\"#g50-224\\\"></use></g><g transform=\\\"matrix(.0091,0,0,-0.0091,12.116,4.041)\\\"><use xlink:href=\\\"#g50-73\\\"></use></g></svg>.</span>\",\"PeriodicalId\":15840,\"journal\":{\"name\":\"Journal of Function Spaces\",\"volume\":\"69 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Function Spaces\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1155/2024/5581805\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Function Spaces","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1155/2024/5581805","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了从加权谐波布洛赫空间到加权谐波齐格蒙空间的组成算子的规范。临界常数在开放的单位盘上。我们首先给出和之间的组成算子有界的必要条件和充分条件。其次,我们将研究 和 之间组成算子的紧凑性情况。最后,我们将估计 和 之间组成算子的基本规范。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Norms of Composition Operators from Weighted Harmonic Bloch Spaces into Weighted Harmonic Zygmund Spaces
This article examines the norms of composition operators from the weighted harmonic Bloch space to the weighted harmonic Zygmund space . The critical norm is on the open unit disk. We first give necessary and sufficient conditions where the composition operator between and is bounded. Secondly, we will study the compactness case of the composition operator between and . Finally, we will estimate the essential norms of the composition operator between and .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Function Spaces
Journal of Function Spaces MATHEMATICS, APPLIEDMATHEMATICS -MATHEMATICS
CiteScore
4.10
自引率
10.50%
发文量
451
审稿时长
15 weeks
期刊介绍: Journal of Function Spaces (formerly titled Journal of Function Spaces and Applications) publishes papers on all aspects of function spaces, functional analysis, and their employment across other mathematical disciplines. As well as original research, Journal of Function Spaces also publishes focused review articles that assess the state of the art, and identify upcoming challenges and promising solutions for the community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信