基于改进的多视图超图神经网络的学生成绩预测

IF 1.7 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Xuefen Lin, Yada Guo
{"title":"基于改进的多视图超图神经网络的学生成绩预测","authors":"Xuefen Lin, Yada Guo","doi":"10.1080/0952813x.2024.2328234","DOIUrl":null,"url":null,"abstract":"Predicting students’ academic performance is a crucial area of research in Educational Data Mining. Efficient performance prediction can significantly improve instructional effectiveness, facilitat...","PeriodicalId":15677,"journal":{"name":"Journal of Experimental & Theoretical Artificial Intelligence","volume":"30 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Student’s performance prediction based on an improved multi-view hypergraph neural network\",\"authors\":\"Xuefen Lin, Yada Guo\",\"doi\":\"10.1080/0952813x.2024.2328234\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Predicting students’ academic performance is a crucial area of research in Educational Data Mining. Efficient performance prediction can significantly improve instructional effectiveness, facilitat...\",\"PeriodicalId\":15677,\"journal\":{\"name\":\"Journal of Experimental & Theoretical Artificial Intelligence\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Experimental & Theoretical Artificial Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1080/0952813x.2024.2328234\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental & Theoretical Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1080/0952813x.2024.2328234","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

预测学生的学习成绩是教育数据挖掘的一个重要研究领域。高效的成绩预测能极大地提高教学效果,促进学生学习成绩的提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Student’s performance prediction based on an improved multi-view hypergraph neural network
Predicting students’ academic performance is a crucial area of research in Educational Data Mining. Efficient performance prediction can significantly improve instructional effectiveness, facilitat...
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.10
自引率
4.50%
发文量
89
审稿时长
>12 weeks
期刊介绍: Journal of Experimental & Theoretical Artificial Intelligence (JETAI) is a world leading journal dedicated to publishing high quality, rigorously reviewed, original papers in artificial intelligence (AI) research. The journal features work in all subfields of AI research and accepts both theoretical and applied research. Topics covered include, but are not limited to, the following: • cognitive science • games • learning • knowledge representation • memory and neural system modelling • perception • problem-solving
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信