{"title":"线性算子的弱敏感紧凑性","authors":"Quanquan Yao, Peiyong Zhu","doi":"10.1142/s0218127424500160","DOIUrl":null,"url":null,"abstract":"<p>Let <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mo stretchy=\"false\">(</mo><mi>X</mi><mo>,</mo><mi>T</mi><mo stretchy=\"false\">)</mo></math></span><span></span> be a linear dynamical system, where <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mi>X</mi></math></span><span></span> is a separable Banach space and <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>T</mi><mo>:</mo><mi>X</mi><mo>→</mo><mi>X</mi></math></span><span></span> is a bounded linear operator. We show that if <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mo stretchy=\"false\">(</mo><mi>X</mi><mo>,</mo><mi>T</mi><mo stretchy=\"false\">)</mo></math></span><span></span> is invertible, then <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mo stretchy=\"false\">(</mo><mi>X</mi><mo>,</mo><mi>T</mi><mo stretchy=\"false\">)</mo></math></span><span></span> is weakly sensitive compact if and only if <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><mo stretchy=\"false\">(</mo><mi>X</mi><mo>,</mo><mi>T</mi><mo stretchy=\"false\">)</mo></math></span><span></span> is thickly weakly sensitive compact; and that there exists a system <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><mo stretchy=\"false\">(</mo><mi>X</mi><mo stretchy=\"false\">×</mo><mi>Y</mi><mo>,</mo><mi>T</mi><mo stretchy=\"false\">×</mo><mi>S</mi><mo stretchy=\"false\">)</mo></math></span><span></span> such that:</p><table border=\"0\" list-type=\"order\" width=\"95%\"><tr><td valign=\"top\">(1)</td><td colspan=\"5\" valign=\"top\"><p><span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><mo stretchy=\"false\">(</mo><mi>X</mi><mo stretchy=\"false\">×</mo><mi>Y</mi><mo>,</mo><mi>T</mi><mo stretchy=\"false\">×</mo><mi>S</mi><mo stretchy=\"false\">)</mo></math></span><span></span> is cofinitely weakly sensitive compact;</p></td></tr><tr><td valign=\"top\">(2)</td><td colspan=\"5\" valign=\"top\"><p><span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><mo stretchy=\"false\">(</mo><mi>X</mi><mo>,</mo><mi>T</mi><mo stretchy=\"false\">)</mo></math></span><span></span> and <span><math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"><mo stretchy=\"false\">(</mo><mi>Y</mi><mo>,</mo><mi>S</mi><mo stretchy=\"false\">)</mo></math></span><span></span> are weakly sensitive compact; and</p></td></tr><tr><td valign=\"top\">(3)</td><td colspan=\"5\" valign=\"top\"><p><span><math altimg=\"eq-00011.gif\" display=\"inline\" overflow=\"scroll\"><mo stretchy=\"false\">(</mo><mi>X</mi><mo>,</mo><mi>T</mi><mo stretchy=\"false\">)</mo></math></span><span></span> and <span><math altimg=\"eq-00012.gif\" display=\"inline\" overflow=\"scroll\"><mo stretchy=\"false\">(</mo><mi>Y</mi><mo>,</mo><mi>S</mi><mo stretchy=\"false\">)</mo></math></span><span></span> are not syndetically weakly sensitive compact.</p></td></tr></table><p>We also show that if <span><math altimg=\"eq-00013.gif\" display=\"inline\" overflow=\"scroll\"><mo stretchy=\"false\">(</mo><mi>X</mi><mo>,</mo><mi>T</mi><mo stretchy=\"false\">)</mo></math></span><span></span> is weakly sensitive compact, where <span><math altimg=\"eq-00014.gif\" display=\"inline\" overflow=\"scroll\"><mi>X</mi></math></span><span></span> is a complex Banach space, then the spectrum of <span><math altimg=\"eq-00015.gif\" display=\"inline\" overflow=\"scroll\"><mi>T</mi></math></span><span></span> meets the unit circle.</p>","PeriodicalId":50337,"journal":{"name":"International Journal of Bifurcation and Chaos","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Weak Sensitive Compactness for Linear Operators\",\"authors\":\"Quanquan Yao, Peiyong Zhu\",\"doi\":\"10.1142/s0218127424500160\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span><math altimg=\\\"eq-00001.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mo stretchy=\\\"false\\\">(</mo><mi>X</mi><mo>,</mo><mi>T</mi><mo stretchy=\\\"false\\\">)</mo></math></span><span></span> be a linear dynamical system, where <span><math altimg=\\\"eq-00002.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>X</mi></math></span><span></span> is a separable Banach space and <span><math altimg=\\\"eq-00003.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>T</mi><mo>:</mo><mi>X</mi><mo>→</mo><mi>X</mi></math></span><span></span> is a bounded linear operator. We show that if <span><math altimg=\\\"eq-00004.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mo stretchy=\\\"false\\\">(</mo><mi>X</mi><mo>,</mo><mi>T</mi><mo stretchy=\\\"false\\\">)</mo></math></span><span></span> is invertible, then <span><math altimg=\\\"eq-00005.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mo stretchy=\\\"false\\\">(</mo><mi>X</mi><mo>,</mo><mi>T</mi><mo stretchy=\\\"false\\\">)</mo></math></span><span></span> is weakly sensitive compact if and only if <span><math altimg=\\\"eq-00006.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mo stretchy=\\\"false\\\">(</mo><mi>X</mi><mo>,</mo><mi>T</mi><mo stretchy=\\\"false\\\">)</mo></math></span><span></span> is thickly weakly sensitive compact; and that there exists a system <span><math altimg=\\\"eq-00007.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mo stretchy=\\\"false\\\">(</mo><mi>X</mi><mo stretchy=\\\"false\\\">×</mo><mi>Y</mi><mo>,</mo><mi>T</mi><mo stretchy=\\\"false\\\">×</mo><mi>S</mi><mo stretchy=\\\"false\\\">)</mo></math></span><span></span> such that:</p><table border=\\\"0\\\" list-type=\\\"order\\\" width=\\\"95%\\\"><tr><td valign=\\\"top\\\">(1)</td><td colspan=\\\"5\\\" valign=\\\"top\\\"><p><span><math altimg=\\\"eq-00008.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mo stretchy=\\\"false\\\">(</mo><mi>X</mi><mo stretchy=\\\"false\\\">×</mo><mi>Y</mi><mo>,</mo><mi>T</mi><mo stretchy=\\\"false\\\">×</mo><mi>S</mi><mo stretchy=\\\"false\\\">)</mo></math></span><span></span> is cofinitely weakly sensitive compact;</p></td></tr><tr><td valign=\\\"top\\\">(2)</td><td colspan=\\\"5\\\" valign=\\\"top\\\"><p><span><math altimg=\\\"eq-00009.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mo stretchy=\\\"false\\\">(</mo><mi>X</mi><mo>,</mo><mi>T</mi><mo stretchy=\\\"false\\\">)</mo></math></span><span></span> and <span><math altimg=\\\"eq-00010.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mo stretchy=\\\"false\\\">(</mo><mi>Y</mi><mo>,</mo><mi>S</mi><mo stretchy=\\\"false\\\">)</mo></math></span><span></span> are weakly sensitive compact; and</p></td></tr><tr><td valign=\\\"top\\\">(3)</td><td colspan=\\\"5\\\" valign=\\\"top\\\"><p><span><math altimg=\\\"eq-00011.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mo stretchy=\\\"false\\\">(</mo><mi>X</mi><mo>,</mo><mi>T</mi><mo stretchy=\\\"false\\\">)</mo></math></span><span></span> and <span><math altimg=\\\"eq-00012.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mo stretchy=\\\"false\\\">(</mo><mi>Y</mi><mo>,</mo><mi>S</mi><mo stretchy=\\\"false\\\">)</mo></math></span><span></span> are not syndetically weakly sensitive compact.</p></td></tr></table><p>We also show that if <span><math altimg=\\\"eq-00013.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mo stretchy=\\\"false\\\">(</mo><mi>X</mi><mo>,</mo><mi>T</mi><mo stretchy=\\\"false\\\">)</mo></math></span><span></span> is weakly sensitive compact, where <span><math altimg=\\\"eq-00014.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>X</mi></math></span><span></span> is a complex Banach space, then the spectrum of <span><math altimg=\\\"eq-00015.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>T</mi></math></span><span></span> meets the unit circle.</p>\",\"PeriodicalId\":50337,\"journal\":{\"name\":\"International Journal of Bifurcation and Chaos\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Bifurcation and Chaos\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218127424500160\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Bifurcation and Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0218127424500160","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
摘要
设 (X,T) 是线性动力系统,其中 X 是可分离的巴拿赫空间,T:X→X 是有界线性算子。我们证明,如果(X,T)是可逆的,那么当且仅当(X,T)是厚弱敏感紧凑时,(X,T)才是弱敏感紧凑的;并且存在这样一个系统(X×Y,T×S):(1)(X×Y,T×S)是共弱敏感紧凑的;(2)(X,T)和(Y,S)是弱敏感紧凑的;(3)(X,T)和(Y,S)不是联合弱敏感紧凑的。我们还证明,如果 (X,T) 是弱敏感紧凑的,其中 X 是复巴纳赫空间,那么 T 的谱满足单位圆。
Let be a linear dynamical system, where is a separable Banach space and is a bounded linear operator. We show that if is invertible, then is weakly sensitive compact if and only if is thickly weakly sensitive compact; and that there exists a system such that:
(1)
is cofinitely weakly sensitive compact;
(2)
and are weakly sensitive compact; and
(3)
and are not syndetically weakly sensitive compact.
We also show that if is weakly sensitive compact, where is a complex Banach space, then the spectrum of meets the unit circle.
期刊介绍:
The International Journal of Bifurcation and Chaos is widely regarded as a leading journal in the exciting fields of chaos theory and nonlinear science. Represented by an international editorial board comprising top researchers from a wide variety of disciplines, it is setting high standards in scientific and production quality. The journal has been reputedly acclaimed by the scientific community around the world, and has featured many important papers by leading researchers from various areas of applied sciences and engineering.
The discipline of chaos theory has created a universal paradigm, a scientific parlance, and a mathematical tool for grappling with complex dynamical phenomena. In every field of applied sciences (astronomy, atmospheric sciences, biology, chemistry, economics, geophysics, life and medical sciences, physics, social sciences, ecology, etc.) and engineering (aerospace, chemical, electronic, civil, computer, information, mechanical, software, telecommunication, etc.), the local and global manifestations of chaos and bifurcation have burst forth in an unprecedented universality, linking scientists heretofore unfamiliar with one another''s fields, and offering an opportunity to reshape our grasp of reality.