{"title":"有一个非三维列的类数","authors":"Nicholas Cazet","doi":"10.1142/s0219498825502019","DOIUrl":null,"url":null,"abstract":"<p>The axioms of a quandle imply that the columns of its Cayley table are permutations. This paper studies quandles with exactly one non-trivially permuted column. Their automorphism groups, quandle polynomials, (symmetric) cohomology groups, and <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mstyle><mtext mathvariant=\"normal\">Hom</mtext></mstyle></math></span><span></span> quandles are studied. The quiver and cocycle invariant of links using these quandles are shown to relate to linking number.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quandles with one nontrivial column\",\"authors\":\"Nicholas Cazet\",\"doi\":\"10.1142/s0219498825502019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The axioms of a quandle imply that the columns of its Cayley table are permutations. This paper studies quandles with exactly one non-trivially permuted column. Their automorphism groups, quandle polynomials, (symmetric) cohomology groups, and <span><math altimg=\\\"eq-00001.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mstyle><mtext mathvariant=\\\"normal\\\">Hom</mtext></mstyle></math></span><span></span> quandles are studied. The quiver and cocycle invariant of links using these quandles are shown to relate to linking number.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219498825502019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0219498825502019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
quandle 的公理意味着其 Cayley 表的列是排列。本文研究的是恰好有一列非三向排列的 quandle。本文研究了它们的自变群、Quandle 多项式、(对称)同调群和 Hom quandles。研究表明,使用这些阶数的链接的簇不变性和环不变性与链接数有关。
The axioms of a quandle imply that the columns of its Cayley table are permutations. This paper studies quandles with exactly one non-trivially permuted column. Their automorphism groups, quandle polynomials, (symmetric) cohomology groups, and quandles are studied. The quiver and cocycle invariant of links using these quandles are shown to relate to linking number.