具有有限交换链系数环的仿射代数上的阿贝尔和常阿贝尔多义码

Gülsüm Gözde Yılmazgüç, Javier de la Cruz, Edgar Martínez-Moro
{"title":"具有有限交换链系数环的仿射代数上的阿贝尔和常阿贝尔多义码","authors":"Gülsüm Gözde Yılmazgüç, Javier de la Cruz, Edgar Martínez-Moro","doi":"10.1007/s12095-024-00707-0","DOIUrl":null,"url":null,"abstract":"<p>This paper studies Abelian and consta-Abelian polyadic codes over rings defined as affine algebras over chain rings. For this purpose, we use the classical construction via splittings and multipliers of the underlying Abelian group. We also derive some results on the structure of the associated polyadic codes and the number of codes under these conditions.</p>","PeriodicalId":10788,"journal":{"name":"Cryptography and Communications","volume":"80 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Abelian and consta-Abelian polyadic codes over affine algebras with a finite commutative chain coefficient ring\",\"authors\":\"Gülsüm Gözde Yılmazgüç, Javier de la Cruz, Edgar Martínez-Moro\",\"doi\":\"10.1007/s12095-024-00707-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper studies Abelian and consta-Abelian polyadic codes over rings defined as affine algebras over chain rings. For this purpose, we use the classical construction via splittings and multipliers of the underlying Abelian group. We also derive some results on the structure of the associated polyadic codes and the number of codes under these conditions.</p>\",\"PeriodicalId\":10788,\"journal\":{\"name\":\"Cryptography and Communications\",\"volume\":\"80 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cryptography and Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s12095-024-00707-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cryptography and Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12095-024-00707-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究定义为链环上仿射代数的环上阿贝尔和常阿贝尔多义码。为此,我们使用了通过底层阿贝尔群的分裂和乘数的经典构造。我们还推导出了一些关于相关多子编码结构和这些条件下编码数量的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Abelian and consta-Abelian polyadic codes over affine algebras with a finite commutative chain coefficient ring

This paper studies Abelian and consta-Abelian polyadic codes over rings defined as affine algebras over chain rings. For this purpose, we use the classical construction via splittings and multipliers of the underlying Abelian group. We also derive some results on the structure of the associated polyadic codes and the number of codes under these conditions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信