Gülsüm Gözde Yılmazgüç, Javier de la Cruz, Edgar Martínez-Moro
{"title":"具有有限交换链系数环的仿射代数上的阿贝尔和常阿贝尔多义码","authors":"Gülsüm Gözde Yılmazgüç, Javier de la Cruz, Edgar Martínez-Moro","doi":"10.1007/s12095-024-00707-0","DOIUrl":null,"url":null,"abstract":"<p>This paper studies Abelian and consta-Abelian polyadic codes over rings defined as affine algebras over chain rings. For this purpose, we use the classical construction via splittings and multipliers of the underlying Abelian group. We also derive some results on the structure of the associated polyadic codes and the number of codes under these conditions.</p>","PeriodicalId":10788,"journal":{"name":"Cryptography and Communications","volume":"80 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Abelian and consta-Abelian polyadic codes over affine algebras with a finite commutative chain coefficient ring\",\"authors\":\"Gülsüm Gözde Yılmazgüç, Javier de la Cruz, Edgar Martínez-Moro\",\"doi\":\"10.1007/s12095-024-00707-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper studies Abelian and consta-Abelian polyadic codes over rings defined as affine algebras over chain rings. For this purpose, we use the classical construction via splittings and multipliers of the underlying Abelian group. We also derive some results on the structure of the associated polyadic codes and the number of codes under these conditions.</p>\",\"PeriodicalId\":10788,\"journal\":{\"name\":\"Cryptography and Communications\",\"volume\":\"80 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cryptography and Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s12095-024-00707-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cryptography and Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12095-024-00707-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Abelian and consta-Abelian polyadic codes over affine algebras with a finite commutative chain coefficient ring
This paper studies Abelian and consta-Abelian polyadic codes over rings defined as affine algebras over chain rings. For this purpose, we use the classical construction via splittings and multipliers of the underlying Abelian group. We also derive some results on the structure of the associated polyadic codes and the number of codes under these conditions.