{"title":"斯托克斯迪里赫勒到诺伊曼算子","authors":"C. Denis, A. F. M. ter Elst","doi":"10.1007/s00028-023-00930-x","DOIUrl":null,"url":null,"abstract":"<p>Let <span>\\(\\Omega \\subset \\mathbb {R}^d\\)</span> be a bounded open connected set with Lipschitz boundary. Let <span>\\(A^N\\)</span> and <span>\\(A^D\\)</span> be the Stokes Neumann operator and Stokes Dirichlet operator on <span>\\(\\Omega \\)</span>, respectively. We study the associated Stokes version of the Dirichlet-to-Neumann operator and show a Krein formula which relates these three Stokes version operators. We also prove a Stokes version of the Friedlander inequalities, which relates the Dirichlet eigenvalues and the Neumann eigenvalues.</p>","PeriodicalId":51083,"journal":{"name":"Journal of Evolution Equations","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Stokes Dirichlet-to-Neumann operator\",\"authors\":\"C. Denis, A. F. M. ter Elst\",\"doi\":\"10.1007/s00028-023-00930-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span>\\\\(\\\\Omega \\\\subset \\\\mathbb {R}^d\\\\)</span> be a bounded open connected set with Lipschitz boundary. Let <span>\\\\(A^N\\\\)</span> and <span>\\\\(A^D\\\\)</span> be the Stokes Neumann operator and Stokes Dirichlet operator on <span>\\\\(\\\\Omega \\\\)</span>, respectively. We study the associated Stokes version of the Dirichlet-to-Neumann operator and show a Krein formula which relates these three Stokes version operators. We also prove a Stokes version of the Friedlander inequalities, which relates the Dirichlet eigenvalues and the Neumann eigenvalues.</p>\",\"PeriodicalId\":51083,\"journal\":{\"name\":\"Journal of Evolution Equations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Evolution Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00028-023-00930-x\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Evolution Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00028-023-00930-x","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Let \(\Omega \subset \mathbb {R}^d\) be a bounded open connected set with Lipschitz boundary. Let \(A^N\) and \(A^D\) be the Stokes Neumann operator and Stokes Dirichlet operator on \(\Omega \), respectively. We study the associated Stokes version of the Dirichlet-to-Neumann operator and show a Krein formula which relates these three Stokes version operators. We also prove a Stokes version of the Friedlander inequalities, which relates the Dirichlet eigenvalues and the Neumann eigenvalues.
期刊介绍:
The Journal of Evolution Equations (JEE) publishes high-quality, peer-reviewed papers on equations dealing with time dependent systems and ranging from abstract theory to concrete applications.
Research articles should contain new and important results. Survey articles on recent developments are also considered as important contributions to the field.
Particular topics covered by the journal are:
Linear and Nonlinear Semigroups
Parabolic and Hyperbolic Partial Differential Equations
Reaction Diffusion Equations
Deterministic and Stochastic Control Systems
Transport and Population Equations
Volterra Equations
Delay Equations
Stochastic Processes and Dirichlet Forms
Maximal Regularity and Functional Calculi
Asymptotics and Qualitative Theory of Linear and Nonlinear Evolution Equations
Evolution Equations in Mathematical Physics
Elliptic Operators