布尔格斯方程的双目标和分层控制

IF 1.1 3区 数学 Q1 MATHEMATICS
F. D. Araruna, E. Fernández-Cara, L. C. da Silva
{"title":"布尔格斯方程的双目标和分层控制","authors":"F. D. Araruna, E. Fernández-Cara, L. C. da Silva","doi":"10.1007/s00028-024-00952-z","DOIUrl":null,"url":null,"abstract":"<p>We present some results concerning the control of the Burgers equation. We analyze a bi-objective optimal control problem and then the hierarchical null controllability through a Stackelberg–Nash strategy, with one leader and two followers. The results may be viewed as an extension to this nonlinear setting of a previous analysis performed for linear and semilinear heat equations. They can also be regarded as a first step in the solution of control problems of this kind for the Navier–Stokes equations.</p>","PeriodicalId":51083,"journal":{"name":"Journal of Evolution Equations","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bi-objective and hierarchical control for the Burgers equation\",\"authors\":\"F. D. Araruna, E. Fernández-Cara, L. C. da Silva\",\"doi\":\"10.1007/s00028-024-00952-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We present some results concerning the control of the Burgers equation. We analyze a bi-objective optimal control problem and then the hierarchical null controllability through a Stackelberg–Nash strategy, with one leader and two followers. The results may be viewed as an extension to this nonlinear setting of a previous analysis performed for linear and semilinear heat equations. They can also be regarded as a first step in the solution of control problems of this kind for the Navier–Stokes equations.</p>\",\"PeriodicalId\":51083,\"journal\":{\"name\":\"Journal of Evolution Equations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Evolution Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00028-024-00952-z\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Evolution Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00028-024-00952-z","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们介绍了有关布尔格斯方程控制的一些结果。我们分析了一个双目标最优控制问题,然后通过一个领导者和两个跟随者的 Stackelberg-Nash 策略分析了分层空可控性。这些结果可以看作是之前对线性和半线性热方程分析在非线性环境下的扩展。这些结果也可视为解决 Navier-Stokes 方程中此类控制问题的第一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bi-objective and hierarchical control for the Burgers equation

We present some results concerning the control of the Burgers equation. We analyze a bi-objective optimal control problem and then the hierarchical null controllability through a Stackelberg–Nash strategy, with one leader and two followers. The results may be viewed as an extension to this nonlinear setting of a previous analysis performed for linear and semilinear heat equations. They can also be regarded as a first step in the solution of control problems of this kind for the Navier–Stokes equations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
7.10%
发文量
90
审稿时长
>12 weeks
期刊介绍: The Journal of Evolution Equations (JEE) publishes high-quality, peer-reviewed papers on equations dealing with time dependent systems and ranging from abstract theory to concrete applications. Research articles should contain new and important results. Survey articles on recent developments are also considered as important contributions to the field. Particular topics covered by the journal are: Linear and Nonlinear Semigroups Parabolic and Hyperbolic Partial Differential Equations Reaction Diffusion Equations Deterministic and Stochastic Control Systems Transport and Population Equations Volterra Equations Delay Equations Stochastic Processes and Dirichlet Forms Maximal Regularity and Functional Calculi Asymptotics and Qualitative Theory of Linear and Nonlinear Evolution Equations Evolution Equations in Mathematical Physics Elliptic Operators
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信